Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Solving the Mysteries of Regeneration

Published: Thursday, August 22, 2013
Last Updated: Thursday, August 22, 2013
Bookmark and Share
Biologist Peter Reddien seeks to understand planarians’ famous ability to grow new body parts.

Few animals can rival the amazing regeneration abilities of the flatworms known as planarians: When the worms’ tails or heads are cut off, they grow new ones, and even a tiny piece of planarian tissue can regrow an entire animal.

Scientists first observed these phenomena more than a century ago, but until the past few years, they knew very little about how planarians achieve these incredible feats. MIT associate professor of biology Peter Reddien has made it his mission to discover the genetic and molecular basis of planarian regeneration, which he describes as one of the great mysteries of biology.

“Cellular and molecular insight into regeneration has come far in the past decade, but we’ve still got a long way to go to understand how an animal regrows a missing body part,” says Reddien, who is a core member of MIT’s Whitehead Institute. “That is the obsessive focus of my lab — to try to understand how regeneration happens, with the conviction that generation of fundamental knowledge about regeneration works will be important for understanding biology broadly and also for generating ideas for therapeutic applications.”

In recent years, Reddien’s lab has identified dozens of genes involved in planarian regeneration. Many of these are related to human genes, and some are active in response to human injuries. “It’s my hope that our continued work will enhance our understanding of what makes some animals great at regeneration and others not as good,” he says.

‘A golden era’


Growing up in Dallas, Reddien was drawn not to planarians but to planets. He closely followed the exploits of NASA, especially the travels of the Voyager spacecraft, with Voyager 2 reaching Neptune and heading out of the solar system by the time Reddien was 15 years old. “From a young age I thought I would be a physicist who would work for NASA or the Jet Propulsion Laboratory,” he says.

He entered the University of Texas as a physics major, but shifted gears after taking a required biology course.

“I realized that we were in a golden era for biological research, that this was going to be a period in history unlike any other for biological research … a period of great discoveries about how the fundamental attributes of life work,” Reddien recalls. “I found that exhilarating, and I got very excited about that as a future potential path for me.”

After graduating from college, Reddien came to MIT as a graduate student in molecular biology, working with Robert Horvitz, now the David H. Koch Professor of Biology. Among other projects, Horvitz’s lab was studying the molecular mechanisms of programmed cell death, a process critical to embryonic development and in defending against cancer.

Reddien finished his PhD in 2002 — the year Horvitz won the Nobel Prize in physiology or medicine for his work in programmed cell death — and went to the University of Utah to do postdoctoral research on regeneration. Reddien describes his decision at the time to launch into study of the molecular basis of regeneration in planarians as “a bit of a gamble.”

“There was a lot of potential, but it was off the radar and in its early stages as a molecular genetic field,” he says. “At that time, the tools for studying gene function in this organism were just in their infancy. There were no published roles for any gene at the time based on disrupting genes and studying what goes wrong in regeneration.”

At Utah, Reddien worked in the lab of Alejandro Sánchez Alvarado, who had recently shown that a new technique known as RNA interference, which allows genes to be selectively turned off, could work in planarians. Until that point, genetic studies of planarian regeneration had not been possible. Reddien was confident that new tools such as RNA interference could get planarians to reveal their regeneration secrets.

“No one had done it, and it was not an established system for taking that type of approach, so I did feel like I was taking a bit of a risk,” Reddien says. “It worked out better than I could have hoped, but I knew that the road was going to be full of challenges because there weren’t established paths to follow to study regeneration defects in these animals.”

A fundamental approach

Since joining the MIT faculty in 2005, Reddien has discovered dozens of genes that play key roles in regeneration, whether initiating the process or helping to determine which body part needs to be replaced. One gene that his lab investigated, known as notum, interacts with a cell-communication system called the Wnt signaling pathway to control whether an animal regrows a head or a tail.

Reddien also found that adult planarians maintain a population of pluripotent stem cells, known as clonogenic neoblasts, that can grow into any type of tissue. These cells are key to tissue regeneration, and his lab has identified genes that give these cells their regenerative potential.

“This is the kind of science you dream of when you’re a kid,” Reddien says. “We’re cutting off animals’ heads and figuring out how they regrow new ones at a molecular level. It’s up to us to develop the methods we need to solve these problems because it’s such a new field. It’s just been a real adventure and that’s something I’m greatly drawn to in science.”

Many of the genes that Reddien has discovered in planarians have counterparts in the human genome, though the functions of many in humans have been little studied. Learning more about them could help advance the field of regenerative medicine.

“We are taking a fundamental science approach to the problem, with the idea that evolution has already selected for mechanisms that allow regenerative repair events that would be the dream of regenerative medicine. The hope is that understanding these mechanisms could lead to new ideas about how applications could be derived to enhance wound healing and repair in humans,” Reddien says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Mechanically Stimulating Stem Cells
MIT biological engineering graduate student Frances Liu is studying ways to alter mechanical properties of cell environments to produce desired chemical outputs.
Tuesday, March 24, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
Finding a Needle in a Haystack
New technique allows scientists to identify populations of rare stem cells in bone marrow.
Wednesday, October 08, 2014
Researchers Unlock a New Means of Growing Intestinal Stem Cells
Studying these cells could lead to new treatments for diseases ranging from gastrointestinal disease to diabetes.
Monday, December 02, 2013
Two MIT Professors Named Howard Hughes Medical Institute Investigators
Peter Reddien and Aviv Regev are among 27 top biomedical scientists selected nationwide.
Friday, May 10, 2013
Putting the Squeeze on Cells
By deforming cells, researchers can deliver RNA, proteins and nanoparticles for many applications.
Wednesday, January 23, 2013
Precisely Engineering 3-D Brain Tissues
New design technique could enable personalized medicine, studies of brain wiring.
Thursday, November 29, 2012
Success of Engineered Tissue Depends on Where it’s Grown
Cells grown on different types of scaffolds vary in their ability to help repair damaged blood vessels.
Monday, August 20, 2012
Adult Brain Neurons Can Remodel Connections
The findings could lead to creating growth in cells and regions normally unable to repair themselves.
Tuesday, December 02, 2008
Biologists Theorize Role for DNA Packaging in Stem Cell Development
MIT biologists have discovered that the organization of DNA's packing material plays a critical role in directing stem cells to become different types of adult cells.
Monday, November 10, 2008
Cancer Cells Enlist Adult Stem Cells to Promote Metastasis
Researchers show that some breast cancer cells recruit normal adult stem cells and force them to invade distant tissues.
Friday, October 05, 2007
Team Finds Way to Create Cancer Stem Cells
MIT scientists and colleagues have found a way to create in the lab large amounts of cancer stem cells, or cells that can initiate tumors.
Friday, August 17, 2007
MIT Creates 3D Scaffold for Growing Stem Cells
Stem cells grew, multiplied and differentiated into brain cells on a three-dimensional scaffold of tiny protein fragments designed.
Monday, January 08, 2007
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!