Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bypassing Immune Rejection in Stem-Cell-Based Therapies

Published: Friday, August 23, 2013
Last Updated: Friday, August 23, 2013
Bookmark and Share
The scientific community has held tremendous hope for the eventual emergence of stem cell transplantation as a broadly applicable and highly effective therapeutic strategy.

However, the realization of this hope has been plagued by the indomitable immune response to the transplantation of human embryonic stem cell (hESC) derivatives, which prevents the engraftment and long-term survival necessary for functional recovery or preservation of the host tissue.

In an article featured in the latest issue of STEM CELLS, a research group from Stanford University describes a novel regimen for quashing this immunologic barrier — a short-course treatment with two costimlation-adhesion blockade agents, allowing engraftment of transplanted differentiated stem cells and their prolonged survival in tissue.

"Inducing immune tolerance to human embryonic stem cell graft is critical for the clinical success of regenerative medicine,” commented Dr. Joseph Wu, M.D., Professor of Medicine and Radiology at the Stanford University School of Medicine. “We have realized, however, that traditional immunosuppressive therapies used to prevent solid organ rejection, such as calcineurin inhibitors and corticosteroids, are insufficient to prevent human embryonic stem cell rejection following transplantation.”

In the study, hESCs were made to express enhanced green fluorescent protein (eGFP), differentiated to endothelial cells and cardiomyocytes, and transplanted into mouse hindlimbs as well as into both healthy and ischemic mouse myocardia. A novel costimulation-adhesion blockade method was then used alongside a more traditional therapy involving cyclosporine to induce immunosuppression. Detection of eGFP in the tissues allowed the team to track the engraftment and longevity of the transplanted cells over time. The costimulation-adhesion method yielded vastly superior results to the cyclosporine treatment, not only showing significantly improved engraftment and survival of the cells in the tissues but ultimately showing the effective preservation of cardiac function following stem cell transplantation in an induced myocardial infarction model, as shown through MRI.

“Here we demonstrate that a short-course, dual-agent regimen that prevents optimal T cell activation is sufficient to promote the robust and long-term survival of embryonic stem cell derivatives in both healthy and injured tissues in mouse models,” Dr. Wu explained. The authors indicate that the superior response of the transplanted cells to the costimulation-adhesion therapy may be attributed to its repression of both adaptive and innate immunity, which is likely to aid in mitigating the tissues’ rejection of these characteristically immunogenic cells. The researchers’ method led to both local and systemic upregulation of T cell immunoglobulin and mucin domain 3 (TIM3), a Th-1-specific cell surface protein, in addition to an overall reduction of pro-inflammatory cytokines.

“Application of hESC and iPSC-derived cells holds great promise for cell replacement therapies in man, with clinical trials already ongoing in USA/Europe and soon in Japan,” noted Majlinda Lako, Ph.D., Associate Editor for STEM CELLS and Professor of Stem Cell Science at the Institute of Genetic Medicine, Newcastle University. “This current study brings us a step closer to overcoming immunological barriers that have hampered these clinical promises and addresses important issues that must be tackled before successful realization of pluripotent stem cell therapies can take place in humans.”

Speaking on behalf of his research team, Dr. Wu stated, “We are excited by these findings and about their implications for the field. This work demonstrates a simple, effective approach to overcome the immunologic barrier of using human embryonic stem cell derivatives that is far superior to conventional agents currently in use clinically."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!