Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Pursue New Therapies to Improve Rare Disease Drug Development

Published: Friday, September 13, 2013
Last Updated: Friday, September 13, 2013
Bookmark and Share
Projects selected for potential to treat specific rare diseases.

Four new pre-clinical drug development projects at the National Institutes of Health will target a form of blindness and diseases characterized by cardiac problems.

The projects were selected for their potential to treat specific rare diseases and to help scientists uncover new information that can be shared with other researchers.

The studies will be funded through the Therapeutics for Rare and Neglected Diseases (TRND) program at the NIH's National Center for Advancing Translational Sciences (NCATS).

This group of projects also marks the TRND program's first use of stem cells as well as its first collaboration with a large pharmaceutical company, Eli Lilly, to co-develop a treatment for a rare disease.

"TRND is grounded in partnerships with academic, government, pharmaceutical and patient advocacy groups. Working in collaboration, scientists conduct pre-clinical development of new drugs and then advance them to first-in-human clinical trials," said NCATS Director Christopher P. Austin, M.D. "Like all NCATS programs, TRND seeks to develop new technologies and more efficient paradigms for translation, in the context of important unmet medical needs."

Two projects employ therapeutic approaches to developing a treatment for retinitis pigmentosa, a severe form of hereditary blindness.

A third project focuses on a potential treatment for hypoparathyroidism, a hormone-deficiency syndrome that can lead to cardiac problems and convulsions.

The remaining project aims to develop a possible therapeutic that targets a cardiac disorder associated with LEOPARD syndrome, an extremely rare genetic disease that affects many areas of the body.

About 80 percent of patients with LEOPARD syndrome have a cardiac disorder called hypertrophic cardiomyopathy, which is a thickening of the heart muscle that forces the heart to work harder to pump blood, which can lead to early death.

A rare disease is one that affects fewer than 200,000 Americans. NIH estimates that, in total, there are more than 6,000 rare diseases. However, effective pharmacologic treatments exist for only about 200 of these illnesses.

Private companies often do not pursue new therapies for rare diseases due to the low anticipated return on investment. Through TRND, NCATS advances potential treatments for rare and neglected tropical diseases to first-in-human trials, an approach known as "de-risking."

This strategy can make possible new drugs more commercially viable and attractive to outside partners, who can invest in their further development and additional clinical trials. The new projects are:

Long-acting Parathyroid Hormone Analog for the Treatment of Hypoparathyroidism
Henry U. Bryant, Ph.D., distinguished research fellow Lilly Research Laboratories, Eli Lilly and Company, Indianapolis

Use of Rapamycin for the Treatment of Hypertrophic Cardiomyopathy in Patients With Leopard Syndrome
Maria I. Kontaridis, Ph.D., assistant professor of medicine Beth Israel Deaconess Medical Center, Boston

Use of Retinal Progenitor Cells for the Treatment of Retinitis Pigmentosa
Henry J. Klassen, M.D., Ph.D., director, Stem Cell and Retinal Regeneration Program University of California, Irvine School of Medicine

Small Molecule Pharmacological Chaperone for the Treatment of Retinitis Pigmentosa
William F. Brubaker, Ph.D., chief executive officer Bikam Pharmaceuticals, Inc., Cambridge, Mass.

The project descriptions are available at (http://www.ncats.nih.gov/trnd-projects.html).

TRND partners do not receive grants. The collaborative project teams receive in-kind support and gain access to TRND researchers with rare disease drug development capabilities, expertise, and clinical and regulatory resources.

Each project has established data-driven milestones to track progress. TRND staff may choose to discontinue projects that do not achieve milestones in the established timeframe. This allows other more promising candidates to enter the program.

"We are particularly excited about this set of collaborative projects for its potential to produce treatments for underserved patient populations," said John C. McKew, Ph.D., acting director of NCATS Division of Pre-Clinical Innovation and director of the TRND program.

A number of early projects fostered by TRND have reached the stage where partners, such as pharmaceutical, biotechnology or disease groups, are being sought to move the treatments out of TRND and in the next phases of clinical development.

Through the program in the last two years, TRND researchers and collaborators have advanced four projects to human clinical trials, evaluating treatments for sickle cell disease, chronic lymphocytic leukemia, hereditary inclusion body myopathy and Niemann-Pick Type C.

TRND projects are applied for via a solicitation process, and NCATS currently is accepting applications until September 30, 2013.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
Wednesday, August 10, 2016
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Monday, August 08, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Allen Institute Releases Gene Edited Human Stem Cell Lines
The Allen Cell Collection, a publicly available collection of gene edited pluripotent stem cells, has been made available by the Allen Institute.
Designer Cell Fate Switches Could Streamline Stem Cell Biology
Researchers develop new method of reprogramming cells between cell types in a more efficient way than before.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Defining the Immortality of Stem Cells
Researchers defined the mechanisms underlying increased protein quality control of pluripotent stem cells.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Stem Cells Police Themselves to Reduce Scarring
Scientists have discovered stem cells in muscle fibers change gene expressions to respond to injury.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!