Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in Primate

Published: Tuesday, October 01, 2013
Last Updated: Tuesday, October 01, 2013
Bookmark and Share
Study to compare the impact of immune response in autologous transplantation and allogeneic transplantation.

The researchers used cynomolgus monkeys to carry out transplantation into the brain of neural cells derived from iPS cells. Autologous transplantation was found to produce almost no immune reaction and to result in viable neural cells. By contrast, allogeneic transplantation provoked immune reaction by microglia and lymphocytes. The findings of the study has been published in the US scientific journal Stem Cell Reports on September 26, 2012 (US Eastern time).

Parkinson's disease is a progressive and intractable disease of the nervous system in which the loss of dopaminergic neurons in the brain leads to reduced dopamine production, resulting in limb tremor, stiffness causing difficulty in movement, and other symptoms. The therapies applied up till now, based on drugs or electrode treatment, may improve symptoms but have proved unable to halt the depletion of dopaminergic neurons. Hopes have therefore become focused on a therapy with the more radical approach of replacing the lost neural cells through cell transplantation, thereby promoting the formation of new neural pathways to restore brain function. Human iPS cells are looked to as a potential source of the transplant cells.

It is hoped that iPS cells will make it possible to use cells derived from the transplant patients themselves to perform autologous transplantation. If autologous transplantation could allow immune reaction to be avoided, it would also make unnecessary the use of immunosuppressant drugs and avert the risk of side-effects caused by immunosuppression. However, the studies of iPS cell-based autologous transplantation carried out so far, which have used a mouse model, have produced no firm conclusion, with immune reaction observed in some studies but not in others. Moreover, these studies did not involve transplantation of differentiated cells derived from iPS cells in a way that mimicked clinical application. There had thus been no studies directly investigating the effect of autologous transplantation and allogeneic transplantation in primates. This study by Dr. Takahashi's group sought to clarify this area by transplanting dopaminergic neurons prepared from iPS cells into the brains of cynomolgus monkeys and comparing the extent of immune reaction between autologous and allogeneic transplantation.

iPS cells prepared from four cynomolgus monkeys were differentiated into dopaminergic neural cells over a period of 28 days and transplanted into the monkeys' brains, which were observed over a period of approximately three months during which no immunosuppressants were used. The study data show that, in primates, autologous transplantation of iPS cell-derived neural cells produces almost no immune reaction and is superior to allogeneic transplantation in terms of immune reaction control and cell viability.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos