Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Reactivate Gene to Rejuvenate Tissue Repair, Identify Gene that Promotes Stem Cell Self-Renewal

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
Two groups of scientists have made complementary discoveries that break new ground on efforts to turn back the body’s clock on cellular activity.

A team led by Dr. Sean Morrison, Director of CRI and Professor of Pediatrics at UT Southwestern Medical Center, has identified an RNA-binding protein called IMP1 that promotes stem cell self-renewal during fetal development. Self-renewal is the process by which stem cells divide to make more stem cells, which is important for the growth of tissues during fetal development and the regeneration of tissues throughout adult life.

At the same time, researchers including Dr. Hao Zhu, who also directs a lab at CRI and is Assistant Professor of Pediatrics and Internal Medicine at UT Southwestern, have shown that another RNA-binding protein, Lin28a, also promotes tissue repair by reactivating a metabolic state reminiscent of the juvenile developmental stage.

Dr. Zhu’s research, published in Cell, showed that reactivation of Lin28a – a gene that is normally turned on in fetal but not adult tissues – substantially improved hair regrowth and accelerated tissue repair after ear and digit injuries.

“Our work found that Lin28a promotes regeneration through a metabolic mechanism,” said Dr. Zhu. “This finding opens up an exciting possibility that metabolism could be modulated to improve tissue repair, whereby metabolic drugs could be employed to promote regeneration.”

Dr. Morrison’s investigation, published in the online journal eLife, identified a set of genes including IMP1 that are turned on only within time-limited windows, and control developmental switches in stem cell properties between fetal development and adulthood.
IMP1 is turned off during late fetal development, partly as a consequence of increasing expression of a third family of RNA-binding molecules called let-7 microRNAs. Importantly, let-7 microRNAs are turned on during late fetal development in part due to declining expression of Lin28a.

Drs. Morrison and Zhu’s laboratories both studied molecules at different ends of the same pathway – one that regulates stem cell self-renewal and tissue regeneration by modulating the expression of a network of RNA-binding proteins.

“These results are interesting because let-7-regulated networks were first discovered based on their ability to regulate the timing of developmental transitions in worms,” said Dr. Morrison. “This earlier finding suggests that the mechanisms employed by mammalian tissue stem cells to regulate changes in their properties over time are at least partly conserved and depend upon mechanisms inherited from invertebrates.”

A previous study from the Morrison laboratory found that expression of let-7 increases throughout adulthood, reducing the activity of stem cells in older animals. The current findings show that IMP1 inhibits the expression of genes that trigger stem cells to commit to specific fates, while promoting the expression of genes related to self-renewal. Further studies are likely to identify many more genetic targets that enable stem cells to adapt their properties to the changing growth and regeneration demands of tissues over an organism’s life span.

Together, these studies demonstrate that a network of RNA-binding proteins that are turned on specifically during fetal development promote stem cell function and tissue growth by regulating cellular proliferation and metabolism. The loss of Lin28a and IMP1 expression from adult tissues partly explains why adult tissues no longer grow and have less stem cell function than fetal tissues. Thus, by modulating the function of these pathways in adult stem cells, it may be possible to enhance tissue regeneration.

Dr. Zhu’s work was initiated while he was a postdoctoral fellow in Dr. George Daley’s laboratory at Boston Children’s Hospital. Other members of the Daley laboratory, including Shyh-Chang Ng, contributed to this study, and Dr. Daley was senior author on the paper. The work in the Zhu and Morrison laboratories was supported by the National Institutes of Health and the Cancer Prevention and Research Institute of Texas.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Involved in Cocaine Response Identified
UT Southwestern neuroscience researchers have identified the gene by comparing closely related strains of mice often used to study addiction and behavior patterns.
Tuesday, December 24, 2013
Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!