Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Oxford Optronix Launches HypoxyLab™

Published: Thursday, November 14, 2013
Last Updated: Thursday, November 14, 2013
Bookmark and Share
HypoxyLab™ provides a physiologically reproducible, contamination-free, low oxygen/hypoxia environment to create optimal conditions for life science and clinical medicine research.

Oxford Optronix has announced the formal launch of HypoxyLab™ - the industry’s first benchtop, HEPA-filtered, precision-controlled hypoxia workstation.

HypoxyLab creates optimal, contamination-free conditions for a wide variety of cell-based research fields, including cancer biology, radiation cell biology, cardiovascular research, apoptosis, neurology, stem cell research, multidisciplinary drug development and proteomics.

HypoxyLab is a unique, fully-featured and easy-to-use hypoxia workstation that accurately reproduces physiological conditions for cell-based research.

HypoxyLab provides a highly stable, localized environment in which levels of oxygen, carbon dioxide, temperature and humidity are precisely controlled within a HEPA-filtered isolation work chamber.

Using the optional OxyLite™ module, HypoxyLab also uniquely offers support for direct oxygen partial pressure (pO2) measurements from cell media or tissue using fibre-optic sensors.

The ergonomically-designed benchtop workstation maintains ultra-stable climatic conditions using processor-controlled temperature and the latest nebulizer-based, humidifier technology - delivering requisite levels of humidity whilst maintaining a Class 5 environment.

Precision concentrations of O2 and CO2 as well as chamber temperature and humidity are controlled via a color touch-screen display and delivered using unique, electronic gas flow controllers and auto-calibrating, sensors.

The workstation displays real-time values of chamber O2, CO2, Temperature and Humidity on the touch-screen and simultaneously records this information onto a USB memory stick for off-line analysis.

HypoxyLab’s highly optimized working volume ensures ultra-rapid cell cycling and tissue response times, whilst precise oxygen profiling and cycling is controlled via the intuitive graphical user interface. This allows researchers to easily create any number of bespoke oxygen profiling patterns.

In tissue culture technology, there is a growing need for systems capable of creating precise and reproducible mammalian cell environments - now recognized as vital for accurate analysis of both cell metabolism and cell function.

However, a significant proportion of cell biology research is still performed in ‘traditional incubators’, in which cells are routinely exposed to the oxygen values found in air - at least two or three times the value expected in normal tissues - leading to cellular stress, significant physiological changes which influence differentiation, growth factor signaling and other cellular processes including post-translational metabolic pathways.

By delivering a contamination-free environment that offers precise and continuous control of O2, CO2, temperature and humidity, Oxford Optronix’s new HypoxyLab workstation delivers a powerful new solution to research teams looking to accurately reproduce real-life physiological conditions in cell-based research.

Commenting on the launch, Andy Obeid PhD, CEO of Oxford Optronix said: “With the growing industry-wide recognition of the need to create physiologically reproducible, low oxygen and hypoxic environments for mammalian cells in the laboratory, we were determined to create a solution for our customers that combines cost-effectiveness and a small form factor with unrivalled accuracy and precision. Our new HypoxyLab is easy to use, economic to run and delivers the industry’s first benchtop, HEPA-filtered hypoxia workstation with applicability for every cell-based research laboratory.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos