Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Understanding a Protein’s Role in Familial Alzheimer’s

Published: Monday, November 18, 2013
Last Updated: Monday, November 18, 2013
Bookmark and Share
Researchers have used genetic engineering of human iPSC’s to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD).

The findings, published online in the journal Cell Reports, could help elucidate the still-mysterious mechanisms of Alzheimer's disease and better inform development of effective drugs, said principal investigator Lawrence Goldstein, PhD, professor in the Departments of Cellular and Molecular Medicine and Neurosciences and director of the UC San Diego Stem Cell Program.

"In some ways, this is a powerful technical demonstration of the promise of stem cells and genomics research in better understanding and ultimately treating AD," said Goldstein, who is also director of the new Sanford Stem Cell Clinical Center at UC San Diego. "We were able to identify and assign precise limits on how a mutation works in familial AD. That's an important step in advancing the science, in finding drugs and treatments that can slow, maybe reverse, the disease's devastating effects."

Familial AD is a subset of early-onset Alzheimer's disease that is caused by inherited gene mutations. Most cases of Alzheimer's disease — there are an estimated 5.2 million Americans with AD — are sporadic and do not have a precise known cause, though age is a primary risk factor.

In their study, Goldstein and colleagues examined presenilin 1 (PS1), a protein that helps break down other proteins, which is a vital biological necessity for cells and for life. Most notably, PS1 is the catalytic or action-driving component of gamma-secretase, an enzyme that cleaves or splits type-1 transmembrane proteins used to transport cellular material from one side of a cell's membrane to the other, from inside to outside or vice versa.

Among the type-1 proteins cleaved by gamma-secretase is amyloid precursor protein or APP, whose function remains incompletely known. When APP is cleaved by gamma-secretase, peptide fragments called amyloid beta are created. Some researchers believe the accumulation of certain kinds of amyloid beta may result in neuron-killing plaques in the brain, a consequence that has been strongly linked to the development of AD.

Ordinarily, the "molecular scissors" of PS1 do their cutting with no adverse effect, according to Goldstein. But perhaps 20 percent of the time, he said there are "bad cuts" that result in potentially harmful amyloid beta fragments. "Our research demonstrates very precisely that mutations in PS1 double the frequency of bad cuts," he said.

The researchers achieved their unprecedented precision by generating differentiated, purified neurons from stem cells derived from noted biologist Craig Venter, whose genome was fully sequenced and released for public research use in 2007. The created neurons contained different alleles or forms of the mutated gene that produces PS1.

"We were able to investigate exactly how specific mutations and their frequency change the behavior of neurons," said Goldstein. "We took finely engineered cells that we knew and understood and then looked how a single mutation caused changes in the molecular scissors and what happened next."

To exclude potential off-target artifacts observed in previous genome editing work, study co-author Kun Zhang, PhD, associate professor in the Department of Bioengineering at UC San Diego, said he and colleagues used whole exome sequencing to compare the engineered cells with other control cells. They determined that their genome editing approach did not introduce any additional mutations.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
$100M gift launches Sanford Stem Cell Clinical Center
T. Denny Sanford has committed $100 million to the creation of the Sanford Stem Cell Clinical Center at the University of California, San Diego.
Wednesday, November 06, 2013
Grafted Limb Cells Acquire Molecular ‘Fingerprint’ of New Location
Findings further creation of regenerative therapies for humans.
Wednesday, October 30, 2013
From Mature Cells to Embryonic-Like Stem Cells
Bioengineers have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage.
Tuesday, October 22, 2013
Researchers Develop Stem Cell Therapies for Acute Lung Injury
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent.
Monday, October 21, 2013
Single Gene Mutation Linked to Neurological Disorders
Mutation could offer insights into Alzheimer’s, Parkinson’s and Huntigton’s Diseases.
Wednesday, October 16, 2013
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!