Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein Found in Fat-Derived Stem Cells Could Halt Age-Related Retinal Damage

Published: Tuesday, November 19, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
A type of protein found in stem cells taken from adipose (fat) tissue can reverse and prevent age-related, light-induced retinal damage in a mouse model.

Results offer hope for those faced with permanent vision loss. The research, published in the latest issue of STEM CELLS Translational Medicine, has determined that a single injection of adipose-derived stem cells (ASCs) reduced the retinal damage induced by light exposure in mice.

A team of researchers from Gifu Pharmaceutical University and Gifu University in Japan has published results demonstrating that a type of protein found in stem cells taken from adipose (fat) tissue can reverse and prevent age-related, light-induced retinal damage in a mouse model, offering hope for those faced with permanent vision loss.

The research, published in the latest issue of STEM CELLS Translational Medicine, has determined that a single injection of adipose-derived stem cells (ASCs) reduced the retinal damage induced by light exposure in mice. Also, the study found that adipose-derived stem cells in conditioned medium inhibited the retinal damage by hydrogen peroxide and visible light both in the medium and in live mice.

Moreover the research revealed that a type of protein called progranulin found in the ASCs might be what plays the pivotal role in protecting against light-induced eye damage.

Excessive light exposure leads to photoreceptor degeneration, and several studies have suggested that a long-term history of exposure to light may have some impact on the incidence of age-related macular degeneration. Photoreceptor loss is the primary cause of blindness in degenerative diseases such as age-related macular degeneration and retinitis pigmentosa.

“However, there are few effective therapeutic strategies for these diseases,” said the study’s authors, Hideaki Hara, Ph.D., R.Ph., and Kazuhiro Tsuruma, Ph.D., R.Ph.

“Recent studies have demonstrated that bone marrow-derived stem cells protect against central nervous system degeneration with limited results. Just like the bone marrow stem cells, ASCs also self-renew and have the ability to change, or differentiate, as they grow. But since they come from fat, they can be obtained more easily under local anesthesia and in large quantities.”

The fat tissue used in the study was taken from a mouse, altered in the lab and then tested in retinal cells (from mice) in vitro, where it proved to have a protective effect. These results led the team to then test their theory on a live group of mice that had retinal damage after exposure to high levels of light.

Five days after receiving injections of the ASCs, the animals were tested for photoreceptor degeneration and retinal dysfunction. The results showed the degeneration had been significantly inhibited.

“Progranulin was identified as a major secreted protein of ASCs, which showed protective effects against retinal damage in culture and in animal tests using mice,” Drs. Hara and Tsuruma said. “As such, it may be a potential target for the treatment of degenerative diseases of the retina such as age-related macular degeneration and retinitis pigmentosa. The ASCs reduced photoreceptor degeneration without engraftment, which is concordant with the results of previous studies using bone marrow stem cells.”

“This study, suggesting that the protein progranulin may play a pivotal role in protecting against retinal light-induced damage, points to the potential for new therapeutic approaches to degenerative diseases of the retina,” said, Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!