Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Neural Stem Cells Could Meet the Clinical Problem of Critical Limb Ischemia

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
New research has shown human neural stem cells could improve blood flow in critical limb ischemia through the growth of new vessels.

Critical limb ischemia (CLI) is a disease that severely obstructs arteries and reduces the blood flow to legs and feet. CLI remains an unmet clinical problem and with an ageing population and the rise in type II diabetes, the incidence of CLI is expected to increase.

Current stem cell therapy trials for the treatment of CLI have revitalised new hope for improving symptoms and prolonging life expectancy.  However, there are limitations on the use of autologous cell therapy. The patient’s own stem cells are generally invasively harvested from bone marrow or require purification from peripheral blood after cytokine stimulation.  Other sources contain so few stem cells that ex vivo expansion through lengthy bespoke Good Manufacturing Practice processes is required.  Ultimately, these approaches lead to cells of variable quality and potency that are affected by the patient’s age and disease status and lead to inconsistent therapeutic outcomes.

In order to circumvent the problem a team, led by Professor Paolo Madeddu in the Bristol Heart Institute at the University of Bristol, has used a conditionally immortalised clonal human neural stem cell (hNSC) line to treat animal models with limb ischaemia and superimposed diabetes. The CTX cell line, established by stem cell company ReNeuron, is genetically modified to produce genetically and phenotypically stable cell banks.

Results of the new study have shown that CTX treatment effectively improves the recovery from ischaemia through the promotion of the growth of new vessels. The safety of CTX cell treatment is currently being assessed in disabled patients with stroke [PISCES trial, NCT01151124]. As a result, the same cell product is immediately available for starting dose ranging safety and efficacy studies in CLI patients.

Professor Paolo Madeddu, Chair of Experimental Cardiovascular Medicine and Head of Regenerative Medicine Section in the Bristol Heart Institute at the University of Bristol, said: “Currently, there are no effective drug interventions to treat CLI. The consequences are a very poor quality of life, possible major amputation and a life expectancy of less than one year from diagnosis in 50 per cent of all CLI patients.

“Our findings have shown a remarkable advancement towards more effective treatments for CLI and we have also demonstrated the importance of collaborations between universities and industry that can have a social and medical impact.”

Dr John Sinden, Chief Scientific Officer of ReNeuron, added: “The novel idea of using neural stem cells to treat vascular disease arose from a chance discussion with Professor Madeddu.  The discussion led to a short pilot study with our cells producing very clear data, which then developed into a further eight experiments exploring different variants of the disease model, the product formulation and dose variation.

“The study also explored the cascade of molecular events that produced vascular and muscle recovery. It is a great example of industry and academia working successfully towards the key goal, clinical translation.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Monday, May 23, 2016
Deciphering the Role of Fat Stem Cells in Obesity and Diabetes
New study will examine stem cells to pinpoint how excess fat is stored, potentially paving the way for new treatments to combat obesity-linked diseases.
Wednesday, May 21, 2014
Silk and Cellulose Biologically Effective for Use in Stem Cell Cartilage Repair
Over 20 million people in Europe suffer from osteoarthritis which can lead to extensive damage to the knee and hip cartilage.
Wednesday, May 08, 2013
Diabetes Distresses Bone Marrow Stem Cells by Damaging their Microenvironment
New research has shown the presence of a disease affecting small blood vessels, known as microangiopathy, in the bone marrow of diabetic patients.
Friday, February 01, 2013
Scientific News
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
New Therapy Treats Autoimmune Disease Without Harming Normal Immunity
Preclinical study from Penn shows that engineered T cells can selectively target the antibody-producing cells that cause autoimmune disease.
Harnessing An Innate Repair Mechanism Enhances The Success Of Retinal Transplantation
Cross-species research in flies and mice could help solve a major roadblock to successful stem cell replacement therapies in degenerative diseases of the retina, including age-related macular degeneration.
A New Way Out for Stem Cells
Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought.
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Long-Term Culturing of Adult Stem Cells
A new procedure developed by Harvard Stem Cell Institute researchers (HSCI) at Massachusetts General Hospital (MGH) may revolutionize the culturing of adult stem cells.
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
Reclaiming The Immune System's Assault On Tumors
EPFL study shows a way to reclaim corrupted immune cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!