Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Use Nanoscale ‘Patches’ to Sensitize Targeted Cell Receptors

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Researchers have developed nanoscale “patches” that can be used to sensitize targeted cell receptors, making them more responsive to signals that control cell activity.

The finding holds promise for promoting healing and facilitating tissue engineering research.

The research takes advantage of the fact that cells in a living organism can communicate via physical contact. Specifically, when targeted receptors on the surface of a cell are triggered, the cell receives instructions to alter its behavior in some way. For example, the instructions may cause a stem cell to differentiate into a bone cell or a cartilage cell.

These receptors respond to specific ligands, or target molecules. And those ligands have to be present in certain concentrations in order to trigger the receptors. If there aren’t enough target ligands, the receptors won’t respond.

Now researchers have developed nanoscale patches that are embedded with tiny protein fragments called peptides. These peptides bond to a specific cell receptor, making it more sensitive to its target ligand – meaning that it takes fewer ligand molecules to trigger the receptor and its resulting behavior modification.

“This study shows that our concept can work, and there are a host of potential applications,” says Dr. Thom LaBean, an associate professor of materials science at NC State and senior author of a paper describing the work. “For example, if we identify the relevant peptides, we could create patches that sensitize cells to promote cartilage growth on one side of the patch and bone growth on the other side. This could be used to expedite healing or to enable tissue engineering of biomedical implants.”

“What’s important about this is that it allows us to be extremely precise in controlling cell behavior and gene expression,” says Ronnie Pedersen, a Ph.D. student at Duke University and lead author of the paper. “By controlling which peptides are on the patch, we can influence the cell’s activity. And by manipulating the placement of the patch, we can control where that activity takes place.”

The patch itself is made of DNA that researchers have programmed to self-assemble into flexible, two-dimensional sheets. The sheets themselves incorporate molecules called biotin and streptavidin which serve to hold and organize the peptides that are used to sensitize cell receptors.

“These peptides can bind with cell receptors and sensitize them, without blocking the interaction between the receptors and their target ligands,” Pedersen says. “That’s what makes this approach work.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New Way Out for Stem Cells
Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought.
Thursday, June 30, 2016
Eco-Friendly Nanobullet to Battle Bacteria
Researchers have developed a method to combat bacteria by engineering nanoscale particles that add the antimicrobial potency of silver to a core of lignin, a ubiquitous substance found in all plant cells.
Thursday, July 16, 2015
Scientific News
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
3D-Printed Heart-On-A-Chip with Integrated Sensors
Researchers have created the first 3D-printed organ-on-a-chip with integrated sensors, paving the way for more complex, customizable devices.
Gene Therapy Going Global with Portable Device
Portable 'gene therapy in a box' could make future cancer and HIV cures affordable in developing countries.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Genome Engineering Paves Way For Sickle Cell Cure
Researchers from UC Berkeley have used CRISPR-Cas9 gene editing to fix the mutated gene responsible for sickle cell disease.
Preventing Alzheimer's in Mice
Researchers have prevented the Alzheimer’s development in mice by using a virus delivery system to transport a specific gene into the brain.
Link Between Heart and Blood Cells in Early Development Found
Researchers have identifed a key factor in determining the fate of early undifferentiated cells during development.
Scientists Speed Up Muscle Repair
Researchers discovered genetically modified mice were able to support far more regenerative stem cells, for muscle repair, than previously thought.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos