Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Discover New Approach to Treating Colorectal Cancer

Published: Thursday, December 05, 2013
Last Updated: Thursday, December 05, 2013
Bookmark and Share
Approach disarms the gene that drives self-renewal in stem cells that are the root cause of disease, resistance to treatment and relapse.

Colorectal cancer is the third leading cause of cancer-related death in the Western world.

"This is the first step toward clinically applying the principles of cancer stem cell biology to control cancer growth and advance the development of durable cures," says principal investigator Dr. John Dick about the findings published online today in Nature Medicine.

Dr. Dick pioneered the cancer stem cell field by first identifying leukemia stem cells (1994) and colon cancer stem cells (2007). He is also renowned for isolating a human blood stem cell in its purest form – as a single stem cell capable of regenerating the entire blood system – paving the way for clinical use (2011). Dr. Dick holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at University Health Network's Princess Margaret Cancer Centre and McEwen Centre for Regenerative Medicine. He is also a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

In pre-clinical experiments, the research team replicated human colon cancer in mice to determine if   specifically targeting the stem cells was clinically relevant. First, the researchers identified that the gene BMI-1, already implicated in maintaining stem cells in other cancers, is the pivotal regulator of colon cancer stem cells and drives the cycle of self-renewal, proliferation and cell survival. Next, the team used an existing small-molecule inhibitor to successfully block BMI-1, thus demonstrating the clinical relevance of this approach.

Lead author Dr. Antonija Kreso writes: "Inhibiting a recognized regulator of self-renewal is an effective approach to control tumor growth, providing strong evidence for the clinical relevance of self-renewal as a biological process for therapeutic targeting."

Dr. Dick explains: "When we blocked the BMI-1 pathway, the stem cells were unable to self-renew, which resulted in long-term and irreversible impairment of tumour growth. In other words, the cancer  was permanently shut down."

Surgeon-scientist Dr. Catherine O'Brien, senior co-author of the study says: "The clinical potential of this research is exciting because it maps a viable way to develop targeted treatment for colon cancer patients. It is already known that about 65% have the BMI-1 biomarker. With the target identified, and a proven way to tackle it, this knowledge could readily translate into first-in-human trials to provide more personalized cancer medicine."

The research was funded by, Genome Canada through the Ontario Genomics Institute, the Ontario Institute for Cancer Research and a Premier's Summit Award with funds from the Province of Ontario, the Canadian Institutes of Health Research, the Canada Research Chair Program, the Ontario Ministry of Health and Long-Term Care, and The Princess Margaret Cancer Foundation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!