Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Activating Pathway Could Restart Hair Growth in Dormant Hair Follicles

Published: Tuesday, December 10, 2013
Last Updated: Tuesday, December 10, 2013
Bookmark and Share
Manipulation of the Wnt/ß-catenin signaling pathway could provide therapeutic targets for hair loss, unwanted hair growth and skin cancer.

A pathway known for its role in regulating adult stem cells has been shown to be important for hair follicle proliferation, but contrary to previous studies, is not required within hair follicle stem cells for their survival, according to researchers with the Perelman School of Medicine at the University of Pennsylvania.

A new study, published in Cell Stem Cell, identifies a molecular pathway that can be activated to prompt hair growth of dormant hair follicles, or blocked to prevent growth of unwanted hair.

The team examined the functions of Wnt proteins, which are small molecular messengers that convey information between cells and activate signaling via the intracellular molecule β-catenin.

By disrupting Wnt signaling in an animal model with an inhibitor Dkk1, the team found that hair growth was prevented. However, stem cells were still maintained within the dormant hair follicles. When Dkk1 was removed, the Wnt/β-catenin pathway resumed normal function, the stem cells were activated, and hair growth was restored.

The team also unexpectedly found that the Wnt/β-catenin pathway is normally active in non-hairy regions, such as on the palms of hands, soles of feet and the tongue, as well as between hair follicles on the surface of the skin. This finding is consistent with previous results showing that removing β-catenin prevents growth of skin tumors.

"While more research is needed to improve our understanding of this pathway, our results suggest that therapeutics capable of decreasing levels of Wnt/β-catenin signaling in the skin could potentially be used to block growth of unwanted hair, and/or to treat certain skin tumors. Conversely, if delivered in a limited, safe and controlled way, agents that activate Wnt signaling might be used to promote hair growth in dormant hair follicles in conditions such as male pattern baldness,” said senior author Sarah Millar, PhD, professor in the departments of Dermatology and of Cell and Developmental Biology.

Researchers aim to better understand the key components and functions of the Wnt/β-catenin pathway. Important areas of focus for future work will include developing effective means of safely targeting therapeutics to the skin for clinical and cosmetic applications.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Limber Lungs: One Type of Airway Cell Can Regenerate Another Lung Cell Type
Findings from animal study have implications for disorders such as chronic obstructive pulmonary disease.
Tuesday, April 14, 2015
Personalized Cellular Therapy Achieves Complete Remission in 90 Percent of ALL Patients Studied
University of Pennsylvania and Children's Hospital of Philadelphia studies reveal unprecedented results with investigational therapy made from patients' own immune cells.
Friday, October 17, 2014
Scientific News
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Challenging Stem Cell Fate Control
Researchers have found that the fate of stem cells is not only controlled by their local niche, but also by a cell-intrinsic mechanism.
Zika Proteins Responsible for Microcephaly Identified
Researchers have undertaken the first study to examine Zika infection in human neural stem cells from second-trimester fetuses.
Heart Muscle from Stem Cells Aid Cardiovascular Medicine
Researchers discover heart muscle cells from stem cells mirror expression patterns of key genes in donor tissue.
Examining New Hypotheses for Undiagnosed Patients
UnDx Consortium gathers in San Diego to create new paths to identifying currently undiagnosed illnesses.
Novel Therapeutic Approach for Blood Disorders
Gene editing of human blood-forming stem cells mimics a benign genetic condition that helps to overcome sickle cell disease and other blood disorders.
Bone Marrow Transplants Without Using Chemotherapy
Scientists have devised a way to destroy blood stem cells in mice without using chemotherapy or radiotherapy, both of which have toxic side effects.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!