Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Engineer Human Stem Cells and Move Closer to Mastering Regenerative Medicine

Published: Wednesday, December 11, 2013
Last Updated: Wednesday, December 11, 2013
Bookmark and Share
Researchers have successfully converted human embryonic stem cells (hESCs) cultured in the laboratory to a state that is closer to the cells found in the human blastocyst.

This means that scientists are one step closer to cultivating stem cells for research and potential therapeutic purposes, as well as understanding the processes of early human development. These findings are published in the current issue of the prestigious science journal Cell Stem Cell.

Pluripotent stem cells such as hESCs and induced pluripotent stem cells (iPSCs) have the remarkable ability to differentiate into various cell types of the adult body while proliferating continuously in culture. In the field of regenerative medicine, these cells are potentially a limitless resource to generate cells of different body parts such as the eye, liver, brain, kidney and pancreas to treat degenerative diseases or replace of worn out organs. Pluripotency is the essential property of the cells of the blastocyst in the early stages of human development. However, when cultured in the laboratory, these cells adopt molecular differences, which limit their use in therapeutic applications or disease modeling.

Using previously established hESCs, the researchers screened for culture conditions that could induce a stable change of cell state. They found that the use of a specific combination of small molecules and growth factors, termed 3iL, converted hESCs to a state that resembled cells within the native blastocysts.

The GIS team’s discovery will empower researchers with a novel resource to tackle existing challenges. “For the past 15 years, scientists could only work on a single hESC state. We now provide a novel cell state for all hESC applications,” said Prof Ng Huck Hui. “The results from the study will open many new possibilities to study human development and disease. The 3iL hESCs will help to overcome some of the obstacles that limit the potential of pluripotent cells in regenerative medicine.”

The researchers also found that many genes which are active in blastocyst cells but inactive in hESCs were turned on again in this novel cell state. These re-activated genes also showed epigenetic differences. “Every cell has a ’memory’, the epigenome, which is a layer on top of the genome that marks active and inactive genes,” explained Dr Jonathan Göke, a bioinformatician from GIS “When we looked into the epigenome of these 3iL cells, we found that this ‘memory’ was dramatically different; the cells appeared to be partly set back to the state of the embryo.”

To demonstrate how these 3iL hESCs can be used to obtain insights into human development, Prof Ng’s team studied the regulatory system that controls these developmental genes. “Studies of basic mechanisms like gene regulation require a large number of cells,” said Dr Chan Yun Shen, co-lead author, and researcher at GIS. “This is the first time that we are able to see how these genes are potentially regulated. While additional experiments will help to fully characterize these 3iL hESCs, we can already see that they provide an unprecedented way to study early human development without the use of any blastocysts.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Singapore Scientists’ made Significant Discovery for Stem Cell Technology and Clinical Research
Scientists reveal important insights into how researchers can manipulate and engineer different stem cells for the treatment of human degenerative disorders.
Tuesday, September 23, 2008
Scientists Found a Way to Enhance Development of Human Embryonic Stem Cells Therapies
Scientists at the Genome Institute of Singapore and the National University of Singapore have found a way of manipulating ESCs that allows stem cells to be produced for use in clinical treatments.
Tuesday, January 23, 2007
Scientific News
Crucial for Stem Cell Survival Protein Identified Using Editing Tool CRISPR
A team of University of Wisconsin-Madison engineers has identified a protein that is integral to the survival and self-renewal processes of human pluripotent stem cells (hPSC).
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!