Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chromosome Therapy to Correct a Severe Chromosome Defect

Published: Tuesday, January 14, 2014
Last Updated: Tuesday, January 14, 2014
Bookmark and Share
Induced pluripotent stem cell reprogramming offers potential to correct abnormal chromosomes.

Geneticists from Ohio, California and Japan joined forces in a quest to correct a faulty chromosome through cellular reprogramming. Their study, published online January 12, 2014 in Nature, used stem cells to correct a defective “ring chromosome” with a normal chromosome. Such therapy has the promise to correct chromosome abnormalities that give rise to birth defects, mental disabilities and growth limitations.

“In the future, it may be possible to use this approach to take cells from a patient that has a defective chromosome with multiple missing or duplicated genes and rescue those cells by removing the defective chromosome and replacing it with a normal chromosome,” said senior author Anthony Wynshaw-Boris, MD, PhD, James H. Jewell MD '34 Professor of Genetics and chair of Case Western Reserve School of Medicine Department of Genetics and Genome Sciences and University Hospitals Case Medical Center.

Wynshaw-Boris led this research while a professor in pediatrics, the Institute for Human Genetics and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UC San Francisco (UCSF) before joining the faculty at Case Western Reserve in June 2013.

Individuals with ring chromosomes may display a variety of birth defects, but nearly all persons with ring chromosomes at least display short stature due to problems with cell division. A normal chromosome is linear, with its ends protected, but with ring chromosomes, the two ends of the chromosome fuse together, forming a circle. This fusion can be associated with large terminal deletions, a process where portions of the chromosome or DNA sequences are missing. These deletions can result in disabling genetic disorders if the genes in the deletion are necessary for normal cellular functions.

The prospect for effective countermeasures has evaded scientists — until now. The international research team discovered the potential for substituting the malfunctioning ring chromosome with an appropriately functioning one during reprogramming of patient cells into induced pluripotent stem cells (iPSCs). iPSC reprogramming is a technique that was developed by Shinya Yamanaka, MD, PhD, a co-corresponding author on the Nature paper. Yamanaka is a senior investigator at the UCSF-affiliated Gladstone Institutes, a professor of anatomy at UCSF, and the director of the Center for iPS Cell Research and Application (CiRA) at theInstitute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University. He won the Nobel Prize in Medicine in 2012 for developing the reprogramming technique.

Marina Bershteyn, PhD, a postdoctoral fellow in the Wynshaw-Boris lab at UCSF, along with Yohei Hayashi, PhD, a postdoctoral fellow in the Yamanaka lab at the Gladstone Institutes, reprogrammed skin cells from three patients with abnormal brain development due to a rare disorder called Miller-Dieker Syndrome, which results from large terminal deletions in one arm of chromosome 17. One patient had a ring chromosome 17 with the deletion, and the other two patients had large terminal deletions in one copy of chromosome 17, but not a ring. Additionally, each of these patients had one normal chromosome 17.

The researchers observed that, after reprogramming, the ring chromosome 17 that had the deletion vanished entirely and was replaced by a duplicated copy of the normal chromosome 17. However, the terminal deletions in the other two patients remained after reprogramming. To make sure this phenomenon was not unique to ring chromosome 17, the researchers reprogrammed cells from two different patients that each had ring chromosome 13. These reprogrammed cells also lost the ring chromosome, and contained a duplicated copy of the normal chromosome 13.

“It appears that ring chromosomes are lost during rapid and continuous cell divisions during reprogramming,” Yamanaka said. “The duplication of the normal chromosome then corrects for that lost chromosome.”

“Ring loss and duplication of whole chromosomes occur with a certain frequency in stem cells,” explained Bershteyn. “When chromosome duplication compensates for the loss of the corresponding ring chromosome with a deletion, this provides a possible avenue to correct large-scale problems in a chromosome that have no chance of being corrected by any other means.”  

“It is likely that our findings apply to other ring chromosomes, since the loss of the ring chromosome occurred in cells reprogrammed from three different patients,” Hayashi said.

According to Wynshaw-Boris, “In theory, the way you could potentially correct a chromosome with deletions or duplications is to make a ring out of it and then get rid of the ring chromosome during reprogramming. Ring chromosomes are quite rare, but chromosome abnormalities are much more common and cause a variety of severe birth defects. So far, it is only possible to do this chromosome therapy for cells in culture, not in human beings. However, it may be useful to use this for tissue repair of birth defects and other abnormalities found in individuals with chromosomal abnormalities as techniques for regenerative medicine are developed in the future.”

Other collaborators on the paper included Guillaume Desachy, M.Sc., Edward C. Hsiao, MD, Salma Sami, Kathryn M. J. Tsang, and Lauren A. Weiss, PhD, of UCSF; and Arnold R. Kriegstein, MD, PhD of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cell Survival Strategy Is Key to Blood and Immune System Health
Stem cells of the aging bone marrow recycle their own molecules to survive and keep replenishing the blood and immune systems as the body ages.
Monday, February 18, 2013
UCSF Receives $2 Million to Advance UC-Wide Biobanking Initiative
Goal of the project is to develop an ethical, efficient and sustainable system for obtaining, processing and sharing biospecimens and data.
Thursday, November 15, 2012
Gladstone Scientists Use Stem Cell Technology to Tackle Huntington’s Disease
International consortium uses patient cells to develop a human model of Huntington’s disease in a dish to improve and speed drug development.
Monday, July 02, 2012
Gladstone Scientists Reprogram Skin Cells into Brain Cells
Innovative technique lays groundwork for novel stem cell therapies.
Monday, June 11, 2012
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!