Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Overcome Damage in Other Cells by Exporting Mitochondria

Published: Thursday, January 16, 2014
Last Updated: Thursday, January 16, 2014
Bookmark and Share
Protein identified that increases the transfer of mitochondria from Mesenchymal stem cells to lung cells.

In work published in The EMBO Journal, the researchers reveal that the delivery of mitochondria to human lung cells can rejuvenate damaged cells. The migration of mitochondria from stem cells to epithelial cells also helps to repair tissue damage and inflammation linked to asthma-like symptoms in mice.

“Our results show that the movement of mitochondria from stem cells to recipient cells is regulated by the protein Miro1 and is part of a well-directed process,” remarked Anurag Agrawal, Professor at the CSIR-Institute of Genomics and Integrative Biology in Delhi, India, and one of the lead authors of the study. “The introduction of mitochondria into damaged cells has beneficial effects on the health of cells and, in the long term, we believe that mesenchymal stem cells could even be engineered to create more effective therapies for lung disease in humans.”

Earlier work revealed that mitochondria can be transferred between cells through tunneling nanotubes, thread-like structures formed from the plasma membranes of cells that bridge between different types of cells. Stem cells can also use tunneling nanotubes to transfer mitochondria to neighboring cells and the number of these nanotubes increases under conditions of stress.

In the study, the protein Miro1 was shown to regulate the transfer of mitochondria from mesenchymal stem cells to epithelial cells. Stem cells that were engineered to have higher amounts of Miro1 were able to transfer mitochondria more efficiently and were therapeutically more effective when tested in mouse models of airway injury and asthma, compared to untreated cells.

“We hope to determine how this pathway might translate into better stem cell therapies for human disease,” added Agrawal.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Designer Cell Fate Switches Could Streamline Stem Cell Biology
Researchers develop new method of reprogramming cells between cell types in a more efficient way than before.
Allen Institute Releases Gene Edited Human Stem Cell Lines
The Allen Cell Collection, a publicly available collection of gene edited pluripotent stem cells, has been made available by the Allen Institute.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Defining Immortality of Stem Cells
Researchers defined the mechanisms underlying increased protein quality control of pluripotent stem cells.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Stem Cells Police Themselves to Reduce Scarring
Scientists have discovered stem cells in muscle fibers change gene expressions to respond to injury.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!