Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

TAP Biosystems Presents New Data on 3D Cell Culture Research

Published: Monday, January 20, 2014
Last Updated: Sunday, January 19, 2014
Bookmark and Share
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.

TAP Biosystems has announced that it will be giving two presentations on its RAFT 3D cell culture system at the Society for Laboratory Automation and Screening (SLAS) Conference in San Diego.

Senior applications specialists will discuss how 3D models are being used to improve oncology, neuroscience and toxicology research programmes and present the latest research data.

TAP is presenting a lunchtime tutorial entitled: “Use of 3D cell culture in oncology research” which will be hosted by Dr Grant Cameron, TAP Biosystems’ RAFT Development Director in room 28a between 12.30-1.15pm on Monday January 20th.

The presentation will include details on how 3D cultures with tissue-like, physiologically relevant concentrations of cells and collagen are generated without using complex chemistry, cross linking agents or extended culture periods.

The talk will provide new data showing how cancer cell lines cultured with the RAFT system are used to generate dose response curves, as well as study cell signalling, target modulation and mitochondrial function. It will also focus on new data showing the use of human primary and iPSC hepatocytes with the RAFT system.

Spaces at this tutorial are limited and researchers wanting to attend should click the link http://www.tapbiosystems.com/RAFT_webinar/SLAStutorial.asp to register.

Also on Monday January 20th there will be a podium presentation from 3.00-3.30pm by Dr Rosemary Drake, TAP Biosystems’ Chief Scientific Officer as part of the scaling up microfluidics diagnostics session.

Entitled “Collagen Engineering for Simple, Consistent Production of Complex Model Tissues for Drug Discovery - Stem Cell Niche in a Dish”, it will show how the RAFT process generates defined, spatial assembly of cells and extracellular matrix simply and consistently, and will discuss the importance and influence of the microenvironment on cell behaviour, including iPSC. It will describe engineering the stem cell niche of the cornea, by creating topography in a rapid one step process. It will also discuss methods and tools for aligning the collagen matrix and cells to produce more realistic neural system models and will illustrate the wide applicability of RAFT 3D cell cultures across drug discovery research and screening.

Dr Grant Cameron, TAP Biosystems’ RAFT Development Director commented: “3D cell culture permits more complex systems to be studied and provides greater insights into complex cellular interactions and more physiologically relevant data than conventional 2D systems. Our presentations at SLAS explain how RAFT generated 3D constructs with simple or complex topography can be rapidly produced in standard plates at a scale appropriate for drug discovery. Researchers looking to incorporate reproducible 3D cell cultures into their oncology or toxicology cell-based screening programmes for example, should attend our presentations at SLAS or come and see the simple to use, RAFT system in action on Booth 520.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Biobank Storage Time Affects Blood Test Results
Study finds storage time of blood samples at a biobank may affect test results as much as patient age.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!