Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

TAP Biosystems Presents New Data on 3D Cell Culture Research

Published: Monday, January 20, 2014
Last Updated: Sunday, January 19, 2014
Bookmark and Share
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.

TAP Biosystems has announced that it will be giving two presentations on its RAFT 3D cell culture system at the Society for Laboratory Automation and Screening (SLAS) Conference in San Diego.

Senior applications specialists will discuss how 3D models are being used to improve oncology, neuroscience and toxicology research programmes and present the latest research data.

TAP is presenting a lunchtime tutorial entitled: “Use of 3D cell culture in oncology research” which will be hosted by Dr Grant Cameron, TAP Biosystems’ RAFT Development Director in room 28a between 12.30-1.15pm on Monday January 20th.

The presentation will include details on how 3D cultures with tissue-like, physiologically relevant concentrations of cells and collagen are generated without using complex chemistry, cross linking agents or extended culture periods.

The talk will provide new data showing how cancer cell lines cultured with the RAFT system are used to generate dose response curves, as well as study cell signalling, target modulation and mitochondrial function. It will also focus on new data showing the use of human primary and iPSC hepatocytes with the RAFT system.

Spaces at this tutorial are limited and researchers wanting to attend should click the link to register.

Also on Monday January 20th there will be a podium presentation from 3.00-3.30pm by Dr Rosemary Drake, TAP Biosystems’ Chief Scientific Officer as part of the scaling up microfluidics diagnostics session.

Entitled “Collagen Engineering for Simple, Consistent Production of Complex Model Tissues for Drug Discovery - Stem Cell Niche in a Dish”, it will show how the RAFT process generates defined, spatial assembly of cells and extracellular matrix simply and consistently, and will discuss the importance and influence of the microenvironment on cell behaviour, including iPSC. It will describe engineering the stem cell niche of the cornea, by creating topography in a rapid one step process. It will also discuss methods and tools for aligning the collagen matrix and cells to produce more realistic neural system models and will illustrate the wide applicability of RAFT 3D cell cultures across drug discovery research and screening.

Dr Grant Cameron, TAP Biosystems’ RAFT Development Director commented: “3D cell culture permits more complex systems to be studied and provides greater insights into complex cellular interactions and more physiologically relevant data than conventional 2D systems. Our presentations at SLAS explain how RAFT generated 3D constructs with simple or complex topography can be rapidly produced in standard plates at a scale appropriate for drug discovery. Researchers looking to incorporate reproducible 3D cell cultures into their oncology or toxicology cell-based screening programmes for example, should attend our presentations at SLAS or come and see the simple to use, RAFT system in action on Booth 520.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos