Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Stress Turns Ordinary Cells Pluripotent

Published: Thursday, January 30, 2014
Last Updated: Thursday, January 30, 2014
Bookmark and Share
Researchers demonstrate that ordinary somatic cells from newborn mice can be stripped of their differentiation memory, reverting to a state of pluripotency.

Breakthrough findings by Haruko Obokata and colleagues at the RIKEN Center for Developmental Biology (CDB) look to upset the canonical views on the fundamental definitions of cellular differentiation and pluripotency. In a pair of reports in Nature, Obokata shows that ordinary somatic cells from newborn mice can be stripped of their differentiation memory, reverting to a state of pluripotency in many ways resembling that seen in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).

The conversion process, which Obokata has named STAP (stimulus-triggered acquisition of pluripotency), requires only that the cells be shocked with a dose of sublethal stress, such as low pH or mechanical force, in order to trigger a remarkable transformation, in which the cells shrink, lose the functional characteristics specific to their somatic cell type, and enter a state of stem cell-like pluripotency. Such STAP cells show all the hallmarks of pluripotency, and contribute to chimeric mice and germline transmission when injected into early stage embryos.

Even more interestingly, STAP cells show a level of plasticity that exceeds that even of ESCs and iPSCs, in that they can give rise to cells of both embryonic and extraembryonic lineages; other pluripotent stem cells typically only generate embryonic lineage cells. STAP cells also differ from stem cells in their lower ability to proliferate in culture, but Obokata found that by adding different factors to STAP culture medium, she was able to cause them to transform into either ‘STAP stem cells,’ which behaved very much like embryonic stem cells, or a second form of stem cell capable of both generating extra-embryonic lineages and long-term culture.

“It’s exciting to think about the new possibilities these findings open up, not only in areas like regenerative medicine, but perhaps in the study of cellular senescence and cancer as well,” says Obokata. “But the greatest challenge for me going forward will be to dig deeper into the underlying mechanisms, so that we can gain a deeper understanding of how differentiated cells can covert to such an extraordinarily pluripotent state.”

This work was done in collaboration with Charles Vacanti’s lab at Brigham and Women’s Hospital, Harvard University, Masayuki Yamato’s lab at Tokyo Women’s Medical University, and the laboratories for Genomic Reprogramming, Pluripotent Stem Cell Studies, and Organogenesis and Neurogenesis at the RIKEN CDB.

The reports are published in Nature DOI:10.1038/nature12968 and DOI:10.1038/nature12969

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Growing Functioning Brain Tissue In 3D
RIKEN researchers have induced human embryonic stem cells to self-organize into a 3D cerebellum like structure.
Monday, February 02, 2015
Japanese Team Creates Cancer-Specific Killer T Cells from iPS Cells
Researchers have succeeded for the first time in creating cancer-specific, immune system cells called killer T lymphocytes, from induced pluripotent stem cells (iPS cells).
Wednesday, January 09, 2013
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos