Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

3D Biomatrix Announces Allowance of U.S. Patent

Published: Thursday, February 06, 2014
Last Updated: Thursday, February 06, 2014
Bookmark and Share
Cell culture technology uniquely addresses 3D spheroid and embryoid body growth challenges.

3D Biomatrix, Inc. announce the Notice of Allowance of its U.S. Patent for technology included in the Perfecta3D  Hanging Drop Plates, a novel platform that makes 3D spheroid and embryoid body growth, along with an array of co-cultures, simple and inexpensive to perform. The patent entitled “Hanging Drop Devices, Systems and/or Methods” covers several core technologies: 

• The development of a complete hanging drop system that allows the performance of cell analysis in individual hanging drops within a standard 96- or 384-well platform. 

• The specific design of the Perfecta3D Hanging Drop Plate, which allows the growth of one spheroid or embryoid body per well without adherence to a plastic surface or other substance. 

• The inclusion of a water or media reservoir that acts as a humidity source to alleviate the commonly-encountered hanging drop evaporation problem. 

Researchers have long tested drug compounds and other factors affecting cell growth on flat surfaces in two dimensions (2D), but 2D cell cultures do not accurately represent how cells behave in the three-dimensional body. 3D cell cultures grown in the Perfecta3D Hanging Drop Plates allow researchers to recapitulate these characteristics in vitro, providing a more physiologically-relevant model. 3D Biomatrix’s Hanging Drop Plates facilitate the consistent and controllable growth of small spherical cellular 3D clusters in a well-plate format, allowing researchers to test compounds and other factors in a 3D environment that reflects the human body. 

3D Biomatrix and the University of Michigan are listed as the assignees of the patent. 3D Biomatrix holds an exclusive license for worldwide rights to the intellectual property covered by this patent. The inventors of the Perfecta3D technology include Shuichi Takayama, a professor having a joint appointment in the Department of Biomedical Engineering and Macromolecular Science and Engineering at the University of Michigan, Yi-Chung Tung, Amy Yu-Ching Hsiao and Edward Jan. Dr. Takayama is a member of 3D Biomatrix’s Scientific Advisory Board. 

“The allowance of this patent is an important milestone, and we will continue to expand our IP portfolio. Life science and drug discovery researchers want more relevant tools in their toolbox. Although the hanging drop technology has been used for decades, the available techniques were difficult to use making it challenging to reproduce results consistently. The 96- and 384-well Perfecta3D Hanging Drop Plates make spheroid growth, long- and short-term cultures, and expansive co-culture models simple to perform and reproduce in 3D,” said 3D Biomatrix CEO Laura Schrader.

"Our worldwide customers include researchers in academia performing cell biology, cancer and stem cell research as well as leading pharmaceutical companies who want to reduce the drug attrition rate by getting more relevant answers earlier in their research process along with the ability to perform high-content analysis and high-throughput screening,” concluded Schrader.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos