Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer Biologists Link Tumor Suppressor Gene to Stem Cells

Published: Thursday, March 27, 2014
Last Updated: Thursday, March 27, 2014
Bookmark and Share
The findings appear online in the journal eLife.

Just as archeologists try to decipher ancient tablets to discern their meaning, UT Southwestern Medical Center cancer biologists are working to decode the purpose of an ancient gene considered one of the most important in cancer research.

The p53 gene appears to be involved in signaling other cells instrumental in stopping tumor development. But the p53 gene predates cancer, so scientists are uncertain what its original function is.

In trying to unravel the mystery, Dr. John Abrams, Professor of Cell Biology at UT Southwestern, and his team made a crucial new discovery - tying the p53 gene to stem cells. Specifically, his lab found that when cellular damage is present, the gene is hyperactive in stem cells, but not in other cells. The findings suggest p53’s tumor suppression ability may have evolved from its more ancient ability to regulate stem cell growth.

“The discovery was that only the stem cells light up. None of the others do. The exciting implication is that we are able to understand the function of p53 in stem cells,” said Dr. Abrams, Chair of the Genetics and Development program in UT Southwestern’s Graduate School of Biomedical Sciences. “We may, in fact, have some important answers for how p53 suppresses tumors.”

p53 is one of the hardest working and most effective allies in the fight against cancer, said Dr. Abrams. It regulates other genes, marshaling them to carry out an untold number of preemptive attacks and obliterate many pre-cancerous cells before they ever pose a threat. In nearly every case where there’s a tumor, p53 is damaged or deranged, strongly suggesting that it is a tumor suppressant.

Stem cells are one of the body’s most useful cells because of their regenerative capabilities. Stem cells produce daughter cells, one that is a stem cell and another that can become virtually any kind of cell that’s needed, such as a blood cell or a kidney cell.

Stem cells have received tremendous attention in cancer research because of the stem cell hypothesis. That hypothesis maintains that malignant tumors are initiated and maintained by a population of tumor cells that have properties similar to adult stem cells.

“What this new finding tells us is that an ancient functionality of p53 was hard-wired into stem cell function,” said Dr. Abrams, senior author. “From the standpoint of trying to decipher cancer biology, that’s a pretty profound observation.”

To study the gene, researchers in Dr. Abrams lab, including Dr. Annika Wylie, postdoctoral research fellow and first author on the paper, developed a transgenic sensor that makes cells glow when they are active in drosophila, or fruit flies. Other UT Southwestern researchers involved included Dr. Michael Buszczak, Assistant Professor of Molecular Biology.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Regenerative Medicine Biologists Discover a Cellular Structure that Explains Fate of Stem Cells
The findings are presented in the journal Nature.
Thursday, July 02, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Rare Stem Cells in Testis that Hold Potential for Infertility Treatments Identified
Rare stem cells in testis that produce a biomarker protein called PAX7 help give rise to new sperm cells — and may hold a key to restoring fertility, research by scientists at UT Southwestern Medical Center suggests.
Friday, September 05, 2014
Stem Cell Study Opens Door to Undiscovered World of Biology
Discovery published in Nature measures protein production.
Tuesday, March 11, 2014
Researchers Generate New Neurons in Brains, Spinal Cords of Mammals
Researchers created new nerve cells without the need of stem cell transplants.
Wednesday, February 26, 2014
Scientists Find that Estrogen Promotes Blood-Forming Stem Cell Function
Research could provide potential opportunities for improved treatment of blood cancers and enhance the effectiveness of chemotherapy.
Monday, January 27, 2014
Bone-marrow Environment Helps Fight Infection
Scientists identify bone-marrow environment that leads to production of infection-fighting T and B cells.
Monday, September 16, 2013
UTSW Researchers Identify New Potential Target for Cancer Therapy
Researchers have found that alternative splicing – a process that allows a single gene to code for multiple proteins – appears to be a new potential target for anti-telomerase cancer therapy.
Monday, April 22, 2013
Gene Found that Regenerates Heart Tissue
UT Southwestern researchers identify gene that regenerates heart tissue – critical finding for heart failure prevention.
Thursday, April 18, 2013
UT Southwestern Researchers Identify Mechanism that Maintains Stem Cells
Immune-system receptor maintains stemness of normal adult stem cells and helps leukemia cells growth.
Tuesday, November 27, 2012
Human Melanomas in Mice Predict Skin Cancer
Spread of human melanoma cells in mice correlates with clinical outcomes in patients, UTSW investigators find.
Thursday, November 08, 2012
Genetic Manipulation Boosts Growth of Brain Cells Linked to Learning
Genetic manipulation enhances effects of antidepressants, UT Southwestern researchers report.
Friday, March 09, 2012
Blood-forming Stem Cells' Growth Identified in First Breakthrough from New Institute
Endothelial and perivascular cells are responsible for nurturing haematopoietic stem cells.
Tuesday, January 31, 2012
Researchers at UT Southwestern Find Way to Help Donor Adult Blood Stem Cells Overcome Transplant Rejection
The study show that adult blood stem cells can be regulated to overcome an immune response that leads to transplant rejection.
Monday, August 08, 2011
UT Southwestern and Children’s Medical Center Recruit Internationally Renowned Stem Cell Researcher
Dr. Sean Morrison, an internationally recognized leader in adult stem cell research, to lead new pediatric research initiatives.
Thursday, May 12, 2011
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!