Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bone Marrow Stem Cells Show Promise in Stroke Treatment, UCI Team Finds

Published: Thursday, April 10, 2014
Last Updated: Thursday, April 10, 2014
Bookmark and Share
Research analysis reveals that the stem cells trigger repair mechanisms, limit inflammation.

Stem cells culled from bone marrow may prove beneficial in stroke recovery, scientists at UC Irvine’s Sue & Bill Gross Stem Cell Research Center have learned.

In an analysis of published research, neurologist Dr. Steven Cramer and biomedical engineer Weian Zhao identified 46 studies that examined the use of mesenchymal stromal cells – a type of multipotent adult stem cells mostly processed from bone marrow – in animal models of stroke. They found MSCs to be significantly better than control therapy in 44 of the studies.
Importantly, the effects of these cells on functional recovery were robust regardless of the dosage, the time the MSCs were administered relative to stroke onset or the method of administration. (The cells helped even if given a month after the event and whether introduced directly into the brain or injected via a blood vessel.)

“Stroke remains a major cause of disability, and we are encouraged that the preclinical evidence shows [MSCs’] efficacy with ischemic stroke,” said Cramer, a professor of neurology and leading stroke expert. “MSCs are of particular interest because they come from bone marrow, which is readily available, and are relatively easy to culture. In addition, they already have demonstrated value when used to treat other human diseases.”

He noted that MSCs do not differentiate into neural cells. Normally, they transform into a variety of cell types, such as bone, cartilage and fat cells. “But they do their magic as an inducible pharmacy on wheels and as good immune system modulators, not as cells that directly replace lost brain parts,” he said.
In an earlier report focused on MSC mechanisms of action, Cramer and Zhao reviewed the means by which MSCs promote brain repair after stroke. The cells are attracted to injury sites and, in response to signals released by these damaged areas, begin releasing a wide range of molecules. In this way, MSCs orchestrate numerous activities: blood vessel creation to enhance circulation, protection of cells starting to die, growth of brain cells, etc. At the same time, when MSCs are able to reach the bloodstream, they settle in parts of the body that control the immune system and foster an environment more conducive to brain repair.

“We conclude that MSCs have consistently improved multiple outcome measures, with very large effect sizes, in a high number of animal studies and, therefore, that these findings should be the foundation of further studies on the use of MSCs in the treatment of ischemic stroke in humans,” said Cramer, who is also clinical director of the Sue & Bill Gross Stem Cell Research Center.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skin Cells Turned into Heart Cells and Brain Cells Using Drugs
In a scientific first, Gladstone researchers have used chemical drugs to convert skin cells into heart cells and brain cells, without adding any external genes.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Micro Heart Muscle Created from Stem Cells
Researchers have designed a new way to create micro heart muscle from stem cells using a unique dog bone dish.
Immune Booster Tested in Advanced Merkel Cell Cancer
The immunotherapy drug produced durable responses in many patients.
Mutated Mitochondria Found in Stem Cells
Researchers find hidden genetic mutations in patient-derived stem cells which could ultimately undermine therapeutic benefit.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!