Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Genetic Switching Element

Published: Saturday, May 24, 2014
Last Updated: Saturday, May 24, 2014
Bookmark and Share
Stem cells contain specific proteins that recognize hydroxymethyluracil and therefore contribute to the regulation of gene activity.

Slight modifications in their genome sequences play a crucial role in the conversion of pluripotent stem cells into various differentiated cell types. An LMU team has now identified the factor responsible for one class of modification.

Every cell contains stored hereditary information, encoded in the sequence of nucleobases that make up its DNA. However, in any given cell type, only a fraction of this information is actually used. Which genes are activated and which are turned off is in part determined by a second tier of information which is superimposed on the nucleotide sequences that provide the blueprints for protein synthesis.

This so-called epigenetic level of control is based on the localized, and in principle reversible, attachment of simple chemical tags to specific nucleotides in the genome. This system plays a major role in the regulation of gene activity, and enables the selective expression of different functions in differentiated cell types.

This explains why such DNA modifications play a major role in the differentiation of stem cells. “Several unusual nucleobases have been found in the genomes of stem cells, which are produced by targeted chemical modification of the known building blocks of DNA. These ‘atypical’ bases are thought to be important in determining what types of differentiated cells can be derived from a given stem cell line,” says Professor Thomas Carell from the Department of Chemistry at LMU. All of the unconventional bases so far discovered are derived from the same standard base - cytosine. Furthermore, Carell and his team have shown in earlier work that so-called Tet enzymes are always involved in their synthesis.

Base oxidation regulates gene activity
In cooperation with colleagues at LMU, as well as researchers based in Berlin, Basel and Utrecht, Carell and his group have now shown, for the first time, that a standard base other than cytosine is also modified in embryonic stem cells of mice. Moreover, Tet is at work here too.

“During the development of specialized tissues from stem cells, enzymes belonging to the Tet family also oxidize the thymidine base, as we have now shown with the aid of highly sensitive analytical methods based on mass spectrometry. The product of the reaction, hydroxymethyluracil, was previously - and as it now turns out, erroneously - thought to be synthesized by a different pathway,” Carell explains.

The precise function of hydroxymethyluracil remains unclear. However, using an innovative method for the identification of factors capable of binding to and “reading” the chemical tags that characterize unconventional DNA bases, Carell and colleagues have shown that stem cells contain specific proteins that recognize hydroxymethyluracil, and could therefore contribute to the regulation of gene activity in these cells.

“We hope that these new insights will make it possible to modulate the differentiation of stem cells - causing them to generate cells of a particular type,” says Carell. “It would be wonderful if we were one day able to generate whole organs starting from differentiated cells produced, on demand, by stem cell populations.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!