Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Novogen and CanTx Confirm Trx-1 Potency in Ovarian Stem Cell Model

Published: Thursday, June 19, 2014
Last Updated: Thursday, June 19, 2014
Bookmark and Share
Companies expect to commence first-in-human studies of Trx-1 in ovarian cancer in 1H15.

Novogen Limited and CanTx Inc. have announced the success of proof-of-concept pre-clinical studies confirming the potency of experimental drug, Trx-1, in the treatment of primary ovarian cancer when delivered into the peritoneal cavity. Based on the potency seen in animal models to date, and the potential to prevent recurrence, Novogen and CanTx believe that Intra-Peritoneal Trx-1 could be utilized as a first-line therapy for ovarian cancer.

Trx-1 is being developed for the treatment of ovarian cancer, particularly for its ability to kill chemo-resistant ovarian cancer stem cells. Novogen and CanTx plan to file an Investigational New Drug application (IND) with the FDA in early 2015 and to start a Phase 1 study by mid-2015.

The data presented shows that Trx-1 can significantly retard the growth of highly chemo-resistant, human ovarian cancer stem cells in an animal model considered to be highly representative of the human situation.

Gil Mor, M.D. Ph.D., Professor of Obstetrics, Gynecology and Reproductive Science at Yale School of Medicine presented his group’s research on TrxX1 to date at the Drug Discovery and Therapy 2014 World Congress. The conference is taking place in Boston, June 16 to 19, 2014.

“Ovarian cancer is the most lethal of all the gynecologic malignancies. These tumors are made up of two distinct kinds of cells: cancer stem cells that initiate and perpetuate the tumor and which resist all forms of chemotherapy, and their daughter cells that, in most patients, respond initially to chemotherapy. Where there is an initial response to therapy, it is because the chemo-sensitive daughter cells that make up the bulk of the tumor have responded. But the parent cancer stem cells then respond by generating a new generation of daughter cells that now display the same level of chemo-resistance as the parent cells. This is why when ovarian cancer recurs it is so difficult, if not impossible, to treat,” Prof. Mor explained.

Prof. Mor and his colleagues at Yale have identified and cloned the two main subtypes of ovarian cancer cells representative of ovarian tumor complexity. CD44-/MyD88- epithelial ovarian cancer (EOC) cells represent the bulk of ovarian cancer cells: they are rapidly-dividing, short-lived, and can respond to chemotherapy. CD44+/MyD88+ EOC cells are slow-growing, very long-lived, exhibit tumor-initiating (stem cell-like) properties, and are highly chemotherapy-resistant. These latter cells are the source of tumor recurrence.

Prof. Mor said, “An obvious strategy is to be more successful in treating primary disease, so that we stop the development of recurrent disease. We need to be able to kill the ovarian cancer
stem cells before they have the chance to produce a second generation of highly chemo-resistant daughter cells.”

The animal model developed at Yale involves injecting human CD44+/MyD88+ (cancer stem) cells into the peritoneal cavity of mice, where they quickly establish highly aggressive multiple
tumors comprising both CD44+/MyD88+ cells and recurrent CD44-/MyD88- cells, all highly chemo-resistant. This animal model is representative of the human situation where ovarian
cancer generally is confined to the abdomen and the cells are free to spread, leading to multiple tumors often involving dozens or even hundreds of individual tumors. Faced with the challenge
of treating such scattered tumor load, the injection of anti-cancer drugs directly into peritoneal cavity is an approach clinicians have long considered.

“This is the first time that we’ve seen a compound have such a profound effect on tumor growth and tumor burden in this highly aggressive ovarian cancer animal model,” Mor added. “The
current animal studies were all about proving the concept that an intraperitoneal administration of Trx-1 was capable of reducing tumor burden and carcinomatosis, the main cause of patient mortality. We achieved this objective by preventing the renewal and survival of human ovarian cancer stem cells,” Mor added. “This is a first important step in our goal of making progress in the treatment of this insidious disease. We believe that this now provides the platform for delivering a killer blow by combining Trx-1 with conventional chemotherapy as a first-line therapy and successfully removing all the cellular components of the tumor.”

“This is an exciting outcome that shows what can come of commercial collaboration between industry and academia,” said Graham Kelly, Ph.D., CEO of both Novogen and CanTx. “This result elevates our hopes for Trx-1 beyond the usual recovery of patients with late-stage ovarian cancer, to the exciting prospect of incorporating it into first-line therapy in combination with conventional chemotherapy.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novogen Announces Important Discovery in Regenerative Medicine Program
A key proof-of-concept step to develop drugs capable of stimulating the function of brain tissue stem cells.
Saturday, January 17, 2015
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!