Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Identify Link Between Stem Cell Regulation and the Development of Lung Cancer

Published: Tuesday, June 24, 2014
Last Updated: Tuesday, June 24, 2014
Bookmark and Share
Study explains how factors that regulate the growth of adult stem cells lead to the formation of precancerous lesions.

UCLA researchers led by Dr. Brigitte Gomperts have discovered the inner workings of the process thought to be the first stage in the development of lung cancer. Their study explains how factors that regulate the growth of adult stem cells that repair tissue in the lungs can lead to the formation of precancerous lesions.

Findings from the three-year study could eventually lead to new personalized treatments for lung cancer, which is responsible for an estimated 29 percent of U.S. cancer deaths, making it the deadliest form of the disease.

The study was published online June 19 in the journal Stem Cell. Gomperts, a member of the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and the UCLA Jonsson Comprehensive Cancer Center, collaborated with Manash Paul and Bharti Bisht, postdoctoral scholars and co-lead authors of the study.

Adult stem cells in lung airways are present specifically to repair the airways after injury or disease caused by smoking, pollution, viruses or other factors. Gomperts and her team found that this reparative process is tightly regulated by molecules called reactive oxygen species, or ROS.

Recent research has shown that low levels of ROS are important for signaling the stem cells to perform important functions - such as repairing tissue damage - while high levels of ROS can cause stem cells to die. But the level of ROS needed for repair to be initiated has remained a subject of debate among researchers.

The UCLA study found that the dynamic flux of ROS from low to moderate levels in the airway stem cells is what drives the repair process, and that the increase in ROS levels in the repairing cell is quickly reduced to low levels to prevent excessive cell proliferation.

Gomperts' lab found that disrupting this normal regulation of ROS back to low levels is equivalent to pulling the brakes off of the stem cells: They will continue to make too many of themselves, which causes the cells not to mature and instead become precancerous lesions. Subsequent progressive genetic changes to the cells in these lesions over time can eventually allow cancerous tumors to form.

"Low ROS is what keeps stem cells primed so that your body is poised and ready to respond to injury and repair," said Gomperts, who also is an associate professor in the department of pediatrics at UCLA. "Loss of this ROS regulation leads to precancerous lesions. Now, with this precancerous model in place, we can begin looking for what we call 'driver mutations,' or those specific changes that take the precancerous lesions to full-blown cancer."

Gomperts said that because many different factors - including cigarette smoke, smog and inflammation - could potentially trigger an increase in ROS in the airway stem cells, researchers might eventually be able to customize treatments based on the cause. "There are likely multiple ways for a person to get to a precancerous lesion, so the process could be different among different groups of people. Imagine a personalized way to identify what pathways have gone wrong in a patient, so that we could target a therapy to that individual."

The research's ultimate goal is to develop a targeted strategy to prevent pre-malignant lesions from forming by targeting the biology of these lesions and therefore preventing lung cancer from developing.

"Our study is important because it sheds light on how lung cancer can form, and this will hopefully lead to new therapies for this terrible disease," Paul said.

The UCLA study also is noteworthy for finally identifying specifically how ROS affects the proliferation of stem cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Finds Link Between Neural Stem Cell Overgrowth and Autism-like Behavior in Mice
UCLA researchers demonstrates how, in pregnant mice, inflammation can trigger an excessive division of neural stem cells.
Tuesday, October 14, 2014
Stem Cell Gene Therapy for Sickle Cell Disease Advances Toward Clinical Trials
Gene therapy technique is scheduled to begin clinical trials by early 2014.
Tuesday, July 02, 2013
Rigid Growth Matrix: A Key to Success of Cardiac Tissue Engineering
UCLA team found that rigid matrices promotes the generation of more cardiomyocytes cells from ES cells.
Monday, April 15, 2013
Cells Derived from Pluripotent Stem Cells may Pose Challenges for Clinical Use
UCLA researchers have found that three types of cells derived from hES cells and from iPS cells are similar to each other.
Tuesday, August 23, 2011
Scientists Reprogram Induced Pluripotent Cells into Precursors of Eggs, Sperm
The findings from UCLA researchers can possibly open the door for new treatments for infertility using patient-specific cells.
Wednesday, February 04, 2009
Scientists at UCLA Reprogram Human Skin Cells into Embryonic Stem Cells
UCLA stem cell scientists have reprogrammed human skin cells into cells with the same unlimited properties as embryonic stem cells, without using embryos or eggs.
Tuesday, February 12, 2008
Scientific News
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Newfound Strength in Regenerative Medicine
A promising new approach uses direct mechanical stimulation to repair severely damaged skeletal muscles.
Mapping out Cell Conversion
Researchers develop algorithm that takes the field of cell reprogramming forward.
Donor's Genotype Controls the Differentiation of IPS Cells
Pluripotent stem cells derived from different cell types are equally susceptible to reprogramming, indicates a recent study by the University of Helsinki and the National Institute for Health and Welfare, Finland. However, the genotype of the donor strongly influences the differentiation of the stem cell.
Signals That Make Early Stem Cells Identified
Researchers at The Rockefeller University have identified a new mechanism by which cells are instructed during development to become stem cells
Healing Scarred Hearts
Findings suggest stem cells may one day be used to regenerate damaged tissue after heart attack.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!