Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Form Light-Sensitive 3-D Retinal Tissue

Published: Tuesday, June 24, 2014
Last Updated: Tuesday, June 24, 2014
Bookmark and Share
Researchers induced human stem cells to create a 3-D retina structure that responds to light. The finding may aid the study of eye diseases and could eventually lead to new therapies.

When we view a sunset or a soccer game, an intricate, orchestrated series of events takes place in our eyes. Light passes through the front part of each eye and is refracted and focused on the retina, a thin, delicate tissue at the back of our eyes. The retina contains many specialized cells, including photoreceptor cells, which convert light into electrical signals. These signals are then processed and sent to the brain. If the photoreceptor cells malfunction or die, vision loss and blindness can occur.

Researchers have previously shown that induced pluripotent stem (iPS) cells can grow into a type of retinal cell under certain cell culture conditions. These types of stem cells are adult cells that have been genetically reprogrammed to take on the characteristics of embryonic stem cells. They can grow indefinitely in the laboratory and can theoretically change, or differentiate, into all cell types found in the body.

Previous work showed that mouse and human embryonic stem cells can develop into a 3-D optic cup in culture that resembles the embryonic vertebrate eye. A team led by Drs. Xiufeng Zhong and M. Valeria Canto-Soler at Johns Hopkins University set out to determine to what extent iPS cells could be prompted to differentiate and acquire structural and functional features similar to a human retina. The work was funded in part by NIH’s National Eye Institute (NEI) and National Heart, Lung, and Blood Institute (NHLBI).

The scientists grew human iPS cells in culture dishes in the lab. They reported online on June 10, 2014, in Nature Communications that they were able to coax the cells to gradually take on the characteristics of retinal cells without adding many of the chemicals typically used to induce the cells to mature.

Over time, the iPS cells spontaneously formed cup-like 3-D structures in a sequence of events that mimicked what occurs during human development. The structures developed layers containing all the major cell types that are normally present in the retina, including photoreceptor cells.

To determine whether the photoreceptor cells were sensitive to light, the researchers subjected cells to a flash of light and measured the electrical responses in individual cells. A few cells responded, indicating they had reached a fairly advanced stage of development under the culture conditions.

“We have basically created a miniature human retina in a dish that not only has the architectural organization of the retina but also has the ability to sense light,” Canto-Soler says. “When we began this work, we didn't think stem cells would be able to build up a retina almost on their own. In our system, somehow the cells knew what to do.”

The accomplishment may lead to better tissue culture models to study human eye diseases and explore new therapies.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Early Treatment Benefits Infants with Severe Combined Immunodeficiency
NIH-funded study identifies factors contributing to successful stem cell transplants.
Friday, August 01, 2014
Stem Cell Therapy Rebuilds Heart Muscle in Primates
Human embryonic stem cells used to regenerate damaged primate hearts.
Tuesday, May 13, 2014
Too Much Protein May Kill Brain Cells As Parkinson’s Progresses
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.
Friday, April 11, 2014
NeuroBioBank Gives Researchers One-Stop Access to Post-Mortem Brains
The NIH is shifting from a limited funding role to coordinating a Web-based resource for sharing post-mortem brain tissue, a move which is expected to expedite research on brain disorders.
Tuesday, December 03, 2013
Gene-Silencing Study Finds New Targets for Parkinson’s Disease
NIH study sheds light on treatment of related disorders.
Monday, November 25, 2013
Epigenetic Clock Marks Age of Human Tissues and Cells
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.
Tuesday, November 05, 2013
NIH Scientists Pursue New Therapies to Improve Rare Disease Drug Development
Projects selected for potential to treat specific rare diseases.
Friday, September 13, 2013
Stem Cells Discovered in Deadly Parasitic Flatworms
The study was described in Nature on February 28, 2013.
Friday, March 15, 2013
New Type of Pluripotent Cell Discovered In Adult Breast Tissue
Human body carries personalized “patch kit," Say UCSF scientists.
Tuesday, March 05, 2013
NIH Study Suggests Gene Variation May Shape Bladder Cancer Treatment
Study appeared in the Journal of the National Cancer Institute.
Thursday, January 03, 2013
Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!