Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Reveal Molecular Competition Drives Adult Stem Cells to Specialize

Published: Friday, August 08, 2014
Last Updated: Friday, August 08, 2014
Bookmark and Share
Competition between Bam and COP9 balances the self-renewal and differentiation functions of ovarian GSCs in fruit flies.

Adult organisms ranging from fruit flies to humans harbor adult stem cells, some of which renew themselves through cell division while others differentiate into the specialized cells needed to replace worn-out or damaged organs and tissues.

Understanding the molecular mechanisms that control the balance between self-renewal and differentiation in adult stem cells is an important foundation for developing therapies to regenerate diseased, injured or aged tissue.

In the current issue of the journal Nature, scientists at the Stowers Institute for Medical Research report that competition between two proteins, Bam and COP9, balances the self-renewal and differentiation functions of ovarian germline stem cells (GSCs) in fruit flies (Drosophila melanogaster).

“Bam is the master differentiation factor in the Drosophila female GSC system,” says Stowers Investigator Ting Xie, Ph.D., and senior author of the Nature paper. “In order to carry out the switch from self-renewal to differentiation, Bam must inactivate the functions of self-renewing factors as well as activate the functions of differentiation factors.”

Bam, which is encoded by the gene with the unusual name of bag-of-marbles, is expressed at high levels in differentiating cells and very low levels in GSCs of fruit flies.

Among the self-renewing factors targeted by Bam is the COP9 signalosome (CSN), an evolutionarily conserved, multi-functional complex that contains eight protein sub-units (CSN1 to CSN8). Xie and his collaborators discovered that Bam and the COP9 sub-unit known as CSN4 have opposite functions in regulating the fate of GSCs in female fruit flies.

Bam can switch COP9 function from self-renewal to differentiation by sequestering and antagonizing CSN4, Xie says. “Bam directly binds to CSN4, preventing its association with the seven other COP9 components via protein competition,” he adds. CSN4 is the only COP9 sub-unit that can interact with Bam.

“This study has offered a novel way for Bam to carry out the switch from self-renewal to differentiation,” says Xie, whose lab uses a combination of genetic, molecular, genomic and cell biological approaches to investigate GSCs as well as somatic stem cells of fruit flies.

In the Nature paper, Xie’s lab also reports that CSN4 is the only one of the eight sub-units that is not involved in the regulation of GSC differentiation of female fruit flies. “One possible explanation for the opposite effects of CSN4 and the other CSN proteins is that the sequestration of CSN4 by Bam allows the other CSN proteins to have differentiation-promoting functions,” he says.

“As a powerful model system for studying adult stem cells, Drosophila female GSCs have revealed many novel regulatory strategies which have been later confirmed to be generally true,” adds Su Wang, a co-first author of the paper and also a graduate student in Department of Anatomy and Cell Biology at University of Kansas Medical Center.

In their future studies, Xie says that he hopes to identify the molecular mechanisms that enable COP9 with CSN4 to promote GSC self-renewal and without CSN4 to enhance differentiation.

The findings reported in Nature build upon previous research in Xie’s lab to understand the molecular mechanisms that influence GSC self-renewal and differentiation. The lab previously found that Bam is required to repress the expression of E-cadherin, a cell-to-cell adhesion molecule that tethers adult stem cells to their tissue niches and promotes GSC self-renewal.

Xie’s lab also has shown that Bam inactivates the function of another promoter of GSC self-renewal, the eukaryotic initiation factor-4A (eIF4A), which plays a role in gene expression.

Xie points out that studies in other labs have revealed that Bam also suppresses the expression of the protein Nanos. Like COP9, Nanos is regarded as essential to establishing and maintaining self-renewing GSCs in female fruit flies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Friday, November 27, 2015
Molecular Competition Drives Adult Stem Cells to Specialize
Understanding the molecular mechanisms that control the balance between self-renewal and differentiation in adult stem cells is an important foundation for developing therapies to regenerate diseased, injured or aged tissue.
Tuesday, August 05, 2014
The Yin and Yang of Stem Cell Quiescence and Proliferation
Non-canonical Wnt-signaling maintains a quiescent pool of blood-forming stem cells in mouse bone marrow.
Friday, July 19, 2013
Study Hints That Stem Cells Prepare for Maturity Much Earlier Than Anticipated
Unlike less versatile muscle or nerve cells, embryonic stem cells are by definition equipped to assume any cellular role.
Wednesday, January 09, 2013
Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Rapidly Generating Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!