Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Clinical Trial Evaluates Safety of Stem Cell Transplantation in Spine

Published: Wednesday, August 13, 2014
Last Updated: Wednesday, August 13, 2014
Bookmark and Share
Phase I clinical trial is recruiting eight patients for the 5-year study.

Researchers at the University of California, San Diego School of Medicine have launched a clinical trial to investigate the safety of neural stem cell transplantation in patients with chronic spinal cord injuries.

“The goal of this study is to evaluate the safety of transplanting neural stem cells into the spine for what one day could be a treatment for spinal cord injuries,” said Joseph Ciacci, MD, principal investigator and neurosurgeon at UC San Diego Health System. “The study’s immediate goal, however, is to determine whether injecting these neural stem cells into the spine of patients with spinal cord injury is safe.”

Related goals of the clinical trial include evaluating the stem cell graft’s survival and the effectiveness of immunosuppression drugs to prevent rejection. The researchers will also look for possible therapeutic benefits such as changes in motor and sensory function, bowel and bladder function, and pain levels.

Patients who are accepted for the study will have spinal cord injury to the T7-T12 level of the spine’s vertebrae and will have incurred their injury between one and two years ago.

All participants will receive the stem cell injection. The scientists will use a line of human stem cells approved by the U.S. FDA for human trials in patients with chronic traumatic spinal injuries. These cells were previously tested for safety in patients with amyotrophic lateral sclerosis (ALS).

Since stem cell transplantation for spinal cord injury is just beginning clinical tests, unforeseen risks, complications or unpredictable outcomes are possible. Careful clinical testing is essential to ensure that this type of therapy is developed responsibly with appropriate management of the risks that all medical therapies may present.

Pre-clinical studies of these cells by Ciacci and Martin Marsala, MD, at the UC San Diego School of Medicine, showed that these grafted neural stem cells improved motor function in spinal cord injured rats with minimal side effects indicating that human clinical trials are now warranted.

This clinical trial at UC San Diego Health System is funded by Neuralstem, Inc. and was launched and supported by the UC San Diego Sanford Stem Cell Clinical Center. The Center was recently created to advance leading-edge stem cell medicine and science, protect and counsel patients, and accelerate innovative stem cell research into patient diagnostics and therapy.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Thursday, November 12, 2015
Multiple Models Reveal New Genetic Links in Autism
For answers, researchers turned to mice, stem cells and the “tooth fairy”.
Tuesday, November 11, 2014
Novel Drug Targeting Leukemia Cells Enters Clinical Trial
Phase 1 human clinical trial to assess the safety and efficacy of a new monoclonal antibody for CLL patients.
Friday, September 19, 2014
Scientists Discover Neurochemical Imbalance in Schizophrenia
Researchers discovers that neurons from schizophrenia patients secrete higher amounts of three neurotransmitters.
Tuesday, September 16, 2014
Clinical Trial to Test Safety of Stem Cell-Derived Therapy for Type 1 Diabetes
UC San Diego is initial site for first-in-human testing of implanted cell therapy.
Wednesday, September 10, 2014
Dramatic Growth of Grafted Stem Cells in Rat Spinal Cord Injuries
Reprogrammed human neurons extend axons almost entire length of central nervous system.
Tuesday, August 12, 2014
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!