Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene Silencing Directs Muscle-Derived Stem Cells to Become Bone-Forming Cells

Published: Tuesday, June 06, 2006
Last Updated: Tuesday, June 06, 2006
Bookmark and Share
Investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs.

University of Pittsburgh researchers have demonstrated they can increase the propensity of muscle-derived stem cells (MDSCs) to become bone-forming cells, using RNA interference to turn off genes that regulate cell differentiation.

Based on these results, the investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs as a means of treating various musculoskeletal diseases and injuries.

In their study, the Pitt researchers generated siRNAs to two mouse genes: MyoD1, a master gene that regulates the formation of muscle cells or fibers (myogenesis), and Smad6, which encodes a molecule that specifically inhibits a cell's ability to respond to bone-forming, or osteogenic, signals.

When the researchers examined cultured cells in which myogenesis was inhibited, they found a significant increase in the cells' bone-forming potential.

However, contrary to their expectations, the researchers did not observe any bone formation when the cells were implanted in skeletal muscle.

Yet, when they turned off ostegenic inhibition in these same cells using Smad6 siRNA prior to implanting them in mice, 60 percent of the mice developed radiologically detectable bone within three weeks.

"By understanding the genetic mechanisms that regulate a cell's propensity to differentiate into one type of cell line over another, we may be able to regulate their ability to generate bone for the treatment of various diseases and injuries of the musculoskeletal system, such as osteoporosis or severe fractures," said first author Jonathan B. Pollett, Ph.D., research associate, department of orthopaedic surgery, Children's Hospital of Pittsburgh

Corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair in Orthopaedic Surgery Research, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center (SCRC) of Children's Hospital of Pittsburgh, added that muscle and bone injuries are very frequent in sports medicine and this research may someday significantly improve the treatment of such problems.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Wednesday, August 24, 2016
Stem Cells from Wisdom Teeth Can Be Transformed into Corneal Cells
The cells could potentially be used to treat corneal scarring.
Tuesday, February 24, 2015
Scientific News
Genome Engineering Paves Way For Sickle Cell Cure
Researchers from UC Berkeley have used CRISPR-Cas9 gene editing to fix the mutated gene responsible for sickle cell disease.
Preventing Alzheimer's in Mice
Researchers have prevented the Alzheimer’s development in mice by using a virus delivery system to transport a specific gene into the brain.
Link Between Heart and Blood Cells in Early Development Found
Researchers have identifed a key factor in determining the fate of early undifferentiated cells during development.
Scientists Speed Up Muscle Repair
Researchers discovered genetically modified mice were able to support far more regenerative stem cells, for muscle repair, than previously thought.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
1960s Antibiotics Show Promise for TB Therapy
Research suggests antibiotics introduced in 1963 to treat bacterial infections show promise for tuberculosis therapy.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore the Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos