Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Silencing Directs Muscle-Derived Stem Cells to Become Bone-Forming Cells

Published: Tuesday, June 06, 2006
Last Updated: Tuesday, June 06, 2006
Bookmark and Share
Investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs.

University of Pittsburgh researchers have demonstrated they can increase the propensity of muscle-derived stem cells (MDSCs) to become bone-forming cells, using RNA interference to turn off genes that regulate cell differentiation.

Based on these results, the investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs as a means of treating various musculoskeletal diseases and injuries.

In their study, the Pitt researchers generated siRNAs to two mouse genes: MyoD1, a master gene that regulates the formation of muscle cells or fibers (myogenesis), and Smad6, which encodes a molecule that specifically inhibits a cell's ability to respond to bone-forming, or osteogenic, signals.

When the researchers examined cultured cells in which myogenesis was inhibited, they found a significant increase in the cells' bone-forming potential.

However, contrary to their expectations, the researchers did not observe any bone formation when the cells were implanted in skeletal muscle.

Yet, when they turned off ostegenic inhibition in these same cells using Smad6 siRNA prior to implanting them in mice, 60 percent of the mice developed radiologically detectable bone within three weeks.

"By understanding the genetic mechanisms that regulate a cell's propensity to differentiate into one type of cell line over another, we may be able to regulate their ability to generate bone for the treatment of various diseases and injuries of the musculoskeletal system, such as osteoporosis or severe fractures," said first author Jonathan B. Pollett, Ph.D., research associate, department of orthopaedic surgery, Children's Hospital of Pittsburgh

Corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair in Orthopaedic Surgery Research, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center (SCRC) of Children's Hospital of Pittsburgh, added that muscle and bone injuries are very frequent in sports medicine and this research may someday significantly improve the treatment of such problems.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Wednesday, August 24, 2016
Stem Cells from Wisdom Teeth Can Be Transformed into Corneal Cells
The cells could potentially be used to treat corneal scarring.
Tuesday, February 24, 2015
Scientific News
Microbiome Impacts Tissue Repair, Regeneration
Researchers at the Stowers Institute have established a definitive link between the makeup of the microbiome, the host immune response, and an organism’s ability to heal itself.
New Hope for Zika Treatment Found in Large-Scale Screen of Existing Drugs
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Challenging Stem Cell Fate Control
Researchers have found that the fate of stem cells is not only controlled by their local niche, but also by a cell-intrinsic mechanism.
Zika Proteins Responsible for Microcephaly Identified
Researchers have undertaken the first study to examine Zika infection in human neural stem cells from second-trimester fetuses.
Heart Muscle from Stem Cells Aid Cardiovascular Medicine
Researchers discover heart muscle cells from stem cells mirror expression patterns of key genes in donor tissue.
Examining New Hypotheses for Undiagnosed Patients
UnDx Consortium gathers in San Diego to create new paths to identifying currently undiagnosed illnesses.
Novel Therapeutic Approach for Blood Disorders
Gene editing of human blood-forming stem cells mimics a benign genetic condition that helps to overcome sickle cell disease and other blood disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!