Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Silencing Directs Muscle-Derived Stem Cells to Become Bone-Forming Cells

Published: Tuesday, June 06, 2006
Last Updated: Tuesday, June 06, 2006
Bookmark and Share
Investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs.

University of Pittsburgh researchers have demonstrated they can increase the propensity of muscle-derived stem cells (MDSCs) to become bone-forming cells, using RNA interference to turn off genes that regulate cell differentiation.

Based on these results, the investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs as a means of treating various musculoskeletal diseases and injuries.

In their study, the Pitt researchers generated siRNAs to two mouse genes: MyoD1, a master gene that regulates the formation of muscle cells or fibers (myogenesis), and Smad6, which encodes a molecule that specifically inhibits a cell's ability to respond to bone-forming, or osteogenic, signals.

When the researchers examined cultured cells in which myogenesis was inhibited, they found a significant increase in the cells' bone-forming potential.

However, contrary to their expectations, the researchers did not observe any bone formation when the cells were implanted in skeletal muscle.

Yet, when they turned off ostegenic inhibition in these same cells using Smad6 siRNA prior to implanting them in mice, 60 percent of the mice developed radiologically detectable bone within three weeks.

"By understanding the genetic mechanisms that regulate a cell's propensity to differentiate into one type of cell line over another, we may be able to regulate their ability to generate bone for the treatment of various diseases and injuries of the musculoskeletal system, such as osteoporosis or severe fractures," said first author Jonathan B. Pollett, Ph.D., research associate, department of orthopaedic surgery, Children's Hospital of Pittsburgh

Corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair in Orthopaedic Surgery Research, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center (SCRC) of Children's Hospital of Pittsburgh, added that muscle and bone injuries are very frequent in sports medicine and this research may someday significantly improve the treatment of such problems.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cells from Wisdom Teeth Can Be Transformed into Corneal Cells
The cells could potentially be used to treat corneal scarring.
Tuesday, February 24, 2015
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!