Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Silencing Directs Muscle-Derived Stem Cells to Become Bone-Forming Cells

Published: Tuesday, June 06, 2006
Last Updated: Tuesday, June 06, 2006
Bookmark and Share
Investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs.

University of Pittsburgh researchers have demonstrated they can increase the propensity of muscle-derived stem cells (MDSCs) to become bone-forming cells, using RNA interference to turn off genes that regulate cell differentiation.

Based on these results, the investigators believe that by turning off specific genetic factors they can control the capacity of MDSCs as a means of treating various musculoskeletal diseases and injuries.

In their study, the Pitt researchers generated siRNAs to two mouse genes: MyoD1, a master gene that regulates the formation of muscle cells or fibers (myogenesis), and Smad6, which encodes a molecule that specifically inhibits a cell's ability to respond to bone-forming, or osteogenic, signals.

When the researchers examined cultured cells in which myogenesis was inhibited, they found a significant increase in the cells' bone-forming potential.

However, contrary to their expectations, the researchers did not observe any bone formation when the cells were implanted in skeletal muscle.

Yet, when they turned off ostegenic inhibition in these same cells using Smad6 siRNA prior to implanting them in mice, 60 percent of the mice developed radiologically detectable bone within three weeks.

"By understanding the genetic mechanisms that regulate a cell's propensity to differentiate into one type of cell line over another, we may be able to regulate their ability to generate bone for the treatment of various diseases and injuries of the musculoskeletal system, such as osteoporosis or severe fractures," said first author Jonathan B. Pollett, Ph.D., research associate, department of orthopaedic surgery, Children's Hospital of Pittsburgh

Corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair in Orthopaedic Surgery Research, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center (SCRC) of Children's Hospital of Pittsburgh, added that muscle and bone injuries are very frequent in sports medicine and this research may someday significantly improve the treatment of such problems.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cells from Wisdom Teeth Can Be Transformed into Corneal Cells
The cells could potentially be used to treat corneal scarring.
Tuesday, February 24, 2015
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!