Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Advance in bid to Turn Mice Stem Cells into Blood Vessels

Published: Tuesday, June 27, 2006
Last Updated: Tuesday, June 27, 2006
Bookmark and Share
The goal of the research is to bring together two areas of medical investigation: stem cell research and tissue engineering.

Researchers at the Stanford University School of Medicine have taken a step toward growing blood vessels from stem cells that could eventually be transplanted into living organisms.

Starting with embryonic stem cells derived from mice, surgical resident Oscar Abilez, MD, and colleagues have differentiated the stem cells into myocytes, one of the building blocks of blood vessels, after placing them in a life-like growth environment that the research team had created.

The scientists hope to be able to eventually grow whole blood vessels that can be transplanted back into mice.

"It’s very odd," Abilez said. "We get these stem cells and grow them into contracting myocytes in cultures: You really see them contracting, you really know they’re alive, and you start to believe this stem cell stuff has possibilities."

The findings are published in this month’s edition of the Journal of Endovascular Therapy

The goal of the research is to bring together two of promising areas of medical investigation: stem cell research and tissue engineering.

Tissue engineering, the growth of organs and tissues outside the body for replacement, has achieved transplantations of a variety of human tissues including skin and corneas.

Most recently, a team of researchers at Wake Forest University in Winston-Salem, N.C., performed the transplantation of laboratory-grown bladders into seven children.

Tissue-engineered blood vessels have also seen some success when transplanted into animal models, but still face a variety of limitations, Abilez said, key among them rejection by the immune system.

By creating a tissue-engineered blood vessel grown from a patient’s own stem cells, this rejection could potentially be eliminated, Abilez said.

"Our goal is to derive all the different cell types from the same, original cell," Abilez explained.

"This would be new for an engineered tissue. We hope our work with mouse stem cells could eventually be translated to human autologous adult stem cells."

"This is an exciting, emerging research front," said John Cook, MD, PhD, professor of medicine (cardiovascular medicine). "It has great potential for therapeutic applications."

Abilez’s success is due in part to a custom-made bioreactor that researchers built in their laboratory; it has the capability of delivering controlled chemical, electrical and mechanical stimulation to the stem cells.

"Oscar is the first one to really create an environment which cells see in real life," Zarins said.

"He’s the first one to really create the multiplicity of biomechanical stresses and strains that the vascular system experiences in everyday life when you simply get up and walk around the block."

The computer-controlled bioreactor was developed to help create a standardized process for differentiating stem cells in laboratories that could be used around the world.

"The idea behind it is that you can control various conditions to try to make these stem cells become the cells you want," Abilez said.

"Our goal is to take the mouse stem cells and find the conditions that will make the stem cells into smooth muscle cells (myocytes), endothelial cells and fibroblasts, which make up the three layers of a blood vessel."

"The idea is if we can optimize our yield we can more easily obtain the large number of specific cells required to make a blood vessel."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Elusive Liver Stem Cell Identified in Mice by Researchers
Researchers have found a previously unknown population of cells in mice that function as liver stem cells. The finding could aid drug testing and increase understanding of liver biology and disease.
Friday, August 07, 2015
Tiny Spheres Of Human Cells Mimic The Brain
Researchers have figured out how to create spheres of neuronal cells resembling the cerebral cortex, making functional human brain tissue available for the first time to study neuropsychiatric diseases such as autism and schizophrenia.
Wednesday, May 27, 2015
Telomere Extension Turns Back Aging Clock In Cultured Cells
Researchers delivered a modified RNA that encodes a telomere-extending protein to cultured human cells. Cell proliferation capacity was dramatically increased, yielding large numbers of cells for study.
Tuesday, January 27, 2015
Stem Cells Faulty In Duchenne Muscular Dystrophy
In a mouse model of Duchenne muscular dystrophy, muscle stem cells express connective-tissue genes associated with fibrosis and muscle weakness, according to a new study.
Thursday, December 18, 2014
Tumor Suppressor Also Inhibits Key Property Of Stem Cells
The retinoblastoma protein inhibits cancer by controlling cell division. Now, researchers have shown that it also binds to and inhibits genes necessary for pluripotency.
Friday, November 14, 2014
Scientists Discern Signatures of Old Versus Young Stem Cells
A chemical code scrawled on histones determines which genes in that cell are turned on and which are turned off.
Wednesday, July 03, 2013
New Method Allows Human Embryonic Stem Cells to Avoid Immune System Rejection, Study Finds
According to Stanford University researchers, a short-term treatment with three immune-dampening drugs allowed human embryonic stem cells to survive and thrive in mice.
Wednesday, March 09, 2011
$33M Donation will Fund Stem Cell Building at Stanford
Lorry I. Lokey, the founder of Business Wire will give $33 million to help build new laboratories for Stanford’s Institute for Stem Cell Biology and Regenerative Medicine.
Wednesday, March 07, 2007
Stanford Experts on Method of Deriving Embryonic Stem Cells
In the method single removed cell can divide to produce a line of normal embryonic stem cells.
Thursday, August 24, 2006
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!