Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Master Regulatory Gene of Epithelial Stem Cells Identified

Published: Friday, May 04, 2007
Last Updated: Tuesday, May 08, 2007
Bookmark and Share
Findings from a study at Harvard Medical School have implications for adult stem cell renewal & prostate, breast and skin cancer.

The skin’s ability to replace the tissue it sloughs off is controlled by a variety of genes. A new study from Harvard Medical School published in the May 4 issue of Cell, however, identifies a master regulator of this regeneration process not only for skin, but for many epithelial tissues including breast, prostate, and urogenital tract.

This master regulator of epithelial stem cells turns out to be the p63 gene, a close relative to the well-known tumor-suppressing p53 gene. Without p63, mutant mice run out of the regenerative epithelial stem cells.

The findings also have implications for cancers of the skin, breast and prostate, which are among the most common human malignancies.

The role of p63 in epithelial stem cells has been controversial. Some studies found that p63 maintains a steady pool of the regenerative cells, while other studies argued that p63 has more to do with causing the cells to differentiate into particular types of tissue.

The study, which was lead by Frank McKeon, PhD, professor of cell biology at Harvard Medical School (HMS), shows that p63’s role in not in tissue differentiation but rather to impart "stemness" to the regenerative cells in these tissues.

"With the p63-lacking mice you get normal commitment and differentiation," says McKeon. "The defect is simply running out of stem cells. When you run out of stem cells, you run out of those tissues as we have seen with the mice lacking the p63 gene."

Having established that p63 was only important to the maintenance of stem cells, McKeon and his research team then used the epithelial stem cell cloning methods developed by Howard Green, MD, the George Higginson professor of cell biology at HMS, to show that p63’s key function was to provide the enhanced potential of stem cells to divide.

"The fact that p63 is essential for these epithelial stem cells, while other master regulators have been identified for blood stem cells and spermatocyte stem cells, suggests a fundamental requirement for tissue specificity of these regulators that we don’t understand," says McKeon.

"Dissecting the genetic programs controlled by these regulators will tell us much about how stem cells function and how they go awry in cancer."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
Monday, September 28, 2015
Study of Genetic Disease Reveals new Path to Cell Reprogramming
Harvard scientists find a method to rewind the internal clock of a mature cell and drive it back into an adult stem-cell stage.
Wednesday, November 24, 2010
Blood Stem Cells Fight Invaders, Study Finds
Researchers have discovered that blood stem cells are capable of patrolling the body’s organs where they seek out, and respond to, pathogens.
Friday, November 30, 2007
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos