Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

UW-Madison Scientists Guide Human Skin Cells to Embryonic State

Published: Thursday, November 22, 2007
Last Updated: Thursday, November 22, 2007
Bookmark and Share
Researchers reports the genetic reprogramming of human skin cells to create cells indistinguishable from embryonic stem cells in a paper to be published online.

In a paper to be published Nov. 22 in the online edition of the journal Science a team of University of Wisconsin-Madison researchers reports the genetic reprogramming of human skin cells to create cells indistinguishable from embryonic stem cells.

“The induced cells do all the things embryonic stem cells do. It’s going to completely change the field.”

James Thomson, professor of anatomy and the scientist who first coaxed stem cells from human embryos in 1998. The finding is not only a critical scientific accomplishment, but potentially remakes the tumultuous political and ethical landscape of stem cell biology as human embryos may no longer be needed to obtain the blank slate stem cells capable of becoming any of the 220 types of cells in the human body.

Perfected, the new technique would bring stem cells within easy reach of many more scientists as they could be easily made in labs of moderate sophistication, and without the ethical and legal constraints that now hamper their use by scientists.

The new study was conducted in the laboratory of UW-Madison biologist James Thomson, the scientist who first coaxed stem cells from human embryos in 1998. It was led by Junying Yu of the Genome Center of Wisconsin and the Wisconsin National Primate Research Center.

When UW-Madison researchers succeeded in reprogramming skin cells to behave like embryonic stem cells, they also began to redefine the political and ethical dynamics of the stem-cell debate, a leading bioethicist says.

"The induced cells do all the things embryonic stem cells do," explains Thomson, a professor of anatomy in the University of Wisconsin School of Medicine and Public Health. "It's going to completely change the field."

In addition to exorcising the ethical and political dimensions of the stem cell debate, the advantage of using reprogrammed skin cells is that any cells developed for therapeutic purposes can be customized to the patient.

"They are probably more clinically relevant than embryonic stem cells," Thomson explains. "Immune rejection should not be a problem using these cells."

An important caveat, Thomson notes, is that more study of the newly-made cells is required to ensure that the "cells do not differ from embryonic stem cells in a clinically significant or unexpected way, so it is hardly time to discontinue embryonic stem cell research."

The successful isolation and culturing of human embryonic stem cells in 1998 sparked a huge amount of scientific and public interest, as stem cells are capable of becoming any of the cells or tissues that make up the human body.

The scientific team from the University of Wisconsin-Madison created genetic modifications in skin cells to induce the cells into what scientists call a pluripotent state - a condition that is essentially the same as that of embryonic stem cells.

Junying Yu, James Thomson and their colleagues introduced a set of four genes into human fibroblasts, skin cells that are easy to obtain and grow in culture.

The potential for transplant medicine was immediately recognized, as was their promise as a window to the earliest stages of human development, and for novel drug discovery schemes. The capacity to generate cells that could be used to treat diseases such as Parkinson's, diabetes and spinal cord injuries, among others, garnered much interest by patients and patient advocacy groups.

But embryonic stem cells also sparked significant controversy as embryos were destroyed in the process of obtaining them, and they became a potent national political issue beginning with the 2000 presidential campaign. Since 2001, a national policy has permitted only limited use of some embryonic stem cell lines by scientists receiving public funding.

In the new study, to induce the skin cells to what scientists call a pluripotent state, a condition that is essentially the same as that of embryonic stem cells, Yu, Thomson and their colleagues introduced a set of four genes into human fibroblasts, skin cells that are easy to obtain and grow in culture.

Finding a combination of genes capable of transforming differentiated skin cells to undifferentiated stem cells helps resolve a critical question posed by Dolly, the famous sheep cloned in 1996. Dolly was the result of the nucleus of an adult cell transferred to an oocyte, an unfertilized egg. An unknown combination of factors in the egg caused the adult cell nucleus to be reprogrammed and, when implanted in a surrogate mother, develop into a fully formed animal.

The new study by Yu and Thomson reveal some of those genetic factors. The ability to reprogram human cells through well defined factors would permit the generation of patient-specific stem cell lines without use of the cloning techniques employed by the creators of Dolly.

"These are embryonic stem cell-specific genes which we identified through a combinatorial screen," Thomson says. "Getting rid of the oocyte means that any lab with standard molecular biology can do reprogramming without difficulty to obtain oocytes."

Although Thomson is encouraged that the new cells will speed new cell-based therapies to treat disease, more work is required, he says, to refine the techniques through which the cells were generated to prevent the incorporation of the introduced genes into the genome of the cells. In addition, to ensure their safety for therapy, methods to remove the vectors, the viruses used to ferry the genes into the skin cells, need to be developed.

Using the new reprogramming techniques, the Wisconsin group has developed eight new stem cell lines. As of the writing of the new Science paper, which will appear in the Dec. 21, 2007 print edition of the journal Science, some of the new cell lines have been growing continuously in culture for as long as 22 weeks.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Induced Stem Cells May Unmask Cancer at Earliest Stage
A team of Wisconsin scientists observes the onset of the blood cancer leukemia by coaxing healthy and diseased human bone marrow to become embryonic-like stem cells.
Tuesday, February 08, 2011
Gene Regulating Human Brain Development Identified
New findings by Wisconsin-Madison scientists reveal the main genetic factor responsible for instructing cells at the earliest stages of embryonic development.
Friday, July 02, 2010
Liver Cells Grown From Patients’ Skin Cells Could Lead to Treatment of Liver Diseases
Wisconsin scientists have successfully produced liver cells from patients’ skin cells opening the possibility of treating liver diseases.
Monday, October 12, 2009
California Company Licenses Human Embryonic Stem Cell Technology from WARF
BioTime signs licensing agreement with WARF for 173 patents and patent applications relating to human embryonic stem cell technology created at the UW-Madison.
Tuesday, January 15, 2008
Stem Cells Show Power to Predict Disease, Drug Toxicity
Scientists have used human embryonic stem cells to predict the toxic effects of drugs and provide chemical clues to diagnosing disease.
Monday, December 10, 2007
Stem Cell Therapy Rescues Motor Neurons in ALS Model
University of Wisconsin-Madison scientists show that it is possible to rescue the dying neurons characteristics of ALS by using cell-based therapies.
Wednesday, August 01, 2007
UW Launches Study Testing Adult Stem Cells for Repair of Heart Damage
The University of Wisconsin will take part in a clinical trial that involves investigation of patient’s own stem cells to treat severe coronary artery disease.
Tuesday, March 20, 2007
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos