Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nature Mixes, Matches Genes to Keep Nerve Cells Straight

Published: Thursday, June 12, 2008
Last Updated: Thursday, June 12, 2008
Bookmark and Share
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.

With fewer than 30,000 human genes with which to work, Nature has to mix and match to generate the myriad types of neurons or nerve cells needed to assemble the brain and nervous system. Keeping this involved process on the straight and narrow requires a clever balance of promotion and inhibition, said researchers from Baylor College of Medicine in Houston in a report that appears in the current edition of the journal Developmental Cell.

"Our finding should have implications for the entire stem cell field," said Dr. Soo-Kyung Lee, assistant professor of molecular and cellular biology at BCM. "Scientists are seeking to make particular cell types using combinations of embryonic genes. They need to keep in mind that you do not just push them forward down one pathway. You must also suppress related pathways."

"During embryonic development, one needs to generate a lot of different types of neurons," said Lee, also a faculty member in the BCM Graduate School of Biomedical Sciences. "How are they being generated at the right time and place? To assemble the brain, you need all these different types of neurons. With a limited number of genes, how do you generate such a complex system?"

"We want to understand the molecular mechanisms that allow one gene to influence the formation of many neurons," she said.

They found that both promotion of one pathway and inhibition of another are required to keep the cells on the right road to cell fate determination.

"One factor does not determine cell fate," she said. It's a combination of factors or genes that together affect neuron formation.

She and her colleagues concentrated their work on the development of motor neurons in mice. Two types of nerve cells – spinal motor neurons and V2-interneurons – are required for motor coordination. As they become those cells, they share important regulatory factors, said Lee.

"They share a cell lineage pathway," she said. "We asked how do we generate two different lineages from one pathway?"

A cocktail of the transcription factors Isl1 and Lhx3 can cause embryonic cells to become motor neurons, she said.

"If we put only Lhx3 into the embryonic neural stem cells, they become V2-interneurons," she said. However, deleting the genes can cause the pathways to converge, resulting in hybrid cells that result in the death of the embryos.

This does not happen in Nature, she said, and they found that a gene called Hb9, expressed only in motor neurons, blocks the ability of Lhx3 to cause embryonic neural stem cells to become the V2-interneurons.

"Once you turn on the complex of Isl1 and Lhx3, then you also turn on a repressor that blocks the cells from going down the alternative pathway to becoming V2-interneurons," she said. The motor neuron fate of those cells is sealed. They found a similar repressor function in the V2-interneuron pathway.

"We think this is a delicately developed system," said Lee. "We don't think this mechanism is restricted to motor neurons."

Others who took part in this work include Seunghee Lee, Bora Lee, Kaumudi Joshi and Jae W. Lee, all of BCM and Samuel L. Pfaff of the Salk Institute in La Jolla, California.

The research was funded by the National Institute of Neurological Disorders and Stroke, PEW, March of Dimes Foundations and the Mental Retardation/Developmental Disabilities Research Center.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Role of Cancer Stem Cells in Chemo-Resistance
'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer.
Friday, December 05, 2014
Experimental Drug Targets Chemo-Resistant Breast Cancer Stem Cells
The cells that remain after treatment that could potentially refuel tumor growth, researchers say.
Monday, December 14, 2009
Ronin Provides Alternate Pathway to Pristine Embryonic Stem Cells
The protein Ronin maintains embryonic stem cells in their undifferentiated state and plays roles in genesis of embryos and their development, researchers say.
Friday, June 27, 2008
Findings Indicate How Gene Transcription is Controlled in Embryonic Stem Cells
In a report that appears in the journal Nature Cell Biology, BCM researchers explain that association determines fate in embryonic stem cells.
Monday, May 05, 2008
Notch Controls Bone Formation and Strength
Notch, a protein that governs cell differentiation process in embryos, plays a critical role in bone formation and strength later in life.
Monday, February 25, 2008
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!