Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


Human Nanog Polyclonal

Product Description
Transcriptional factors, OCT3/4 (POU5F1) and STAT3 function as key regulators in maintaining pluripotency of stem cells. Thus, POU5F1 and STAT3 have been widely used as molecular markers of pluripotential stem cells. Pluripotential cell-specific Nanog gene is a newly identified homeodomain-bearing transcriptional factor. Importantly, Nanog is expressed specific to early embryos and pluripotential stem cells including mouse and human embryonic stem (ES) and embryonic germ (EG) cells. It is a key molecule involved in the signaling pathway for maintaining the capacity for self-renewal and pluripotency, bypassing regulation by the STAT3 pathway. Therefore, Nanog is one of the molecular markers suitable for recognizing the undifferentiated state of stem cells in the mouse and human.
Product Human Nanog Polyclonal
Company ReproCell Products
Price Request a quote
More Information View company product page
Catalog Number RCAB004P-F
Quantity 100 uL (0.20 mg/ml)
Company Logo

ReproCell Products
Reprocell Inc KDX Shin-yokohama 381 Bldg 8F 3-8-11, Shin-yokohama, Kohoku-ku, Yokohama Kanagawa 222-0033, Japan

Tel: +81 45-475-3887
Fax: +81 45-474-1006
Email: info_repro@reprocell.com



Scientific News
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Newfound Strength in Regenerative Medicine
A promising new approach uses direct mechanical stimulation to repair severely damaged skeletal muscles.
Mapping out Cell Conversion
Researchers develop algorithm that takes the field of cell reprogramming forward.
Donor's Genotype Controls the Differentiation of IPS Cells
Pluripotent stem cells derived from different cell types are equally susceptible to reprogramming, indicates a recent study by the University of Helsinki and the National Institute for Health and Welfare, Finland. However, the genotype of the donor strongly influences the differentiation of the stem cell.

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!