Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>Resources>Books>This Book
  Books
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skin Cells Turned into Heart Cells and Brain Cells Using Drugs
In a scientific first, Gladstone researchers have used chemical drugs to convert skin cells into heart cells and brain cells, without adding any external genes.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Micro Heart Muscle Created from Stem Cells
Researchers have designed a new way to create micro heart muscle from stem cells using a unique dog bone dish.
Immune Booster Tested in Advanced Merkel Cell Cancer
The immunotherapy drug produced durable responses in many patients.
Mutated Mitochondria Found in Stem Cells
Researchers find hidden genetic mutations in patient-derived stem cells which could ultimately undermine therapeutic benefit.
Scroll Up
Scroll Down

Pluripotent Stem Cells
Bookmark and Share

Pluripotent cells of the early embryo originate all types of somatic cells and germ cells of adult organism. Pluripotent stems cell lines were derived from mammalian embryos and adult tissues using different techniques and from different sources. Despite different origin, all pluripotent stem cell lines demonstrate considerable similarity of the major biological properties. This book examines the fundamental mechanisms which regulate normal development of pluripotent cells into different lineages and are disrupted in cancer initiating cells. Analysis gene expression profiles, differentiation potentials and cell cycle of normal and mutant pluripotent stem cells provide new data to search molecular targets to eliminate malignant cells in tumours. In this book, the authors also aim to present a global picture of how extracellular signals, intracellular signal transduction pathways and transcriptional networks co-operate together to determine the cell fate of pluripotent stem cells. Practical, ethical and legal considerations that must be addressed before induced pluripotent stem (iPS) cells can realise their potential in the treatment of degenerative disease is discussed as well. Recent advancements in the cancer stem cell hypothesis are also summarised and the challenges associated with targeting resistant cancers in the context of stem cell microenvironments are presented.

Further Information


SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!