Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>Resources>White Papers>This White Paper
  White Papers
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Defining Immortality of Stem Cells
Researchers defined the mechanisms underlying increased protein quality control of pluripotent stem cells.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Stem Cells Police Themselves to Reduce Scarring
Scientists have discovered stem cells in muscle fibers change gene expressions to respond to injury.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
Topical Immunotherapy Effective Against Early Skin Cancer
Combination of two commonly used drugs triggers immune response against precancerous skin lesions.
Scroll Up
Scroll Down

Highly Reproducible Gene Delivery for Stem Cell Research
Bookmark and Share

AMSBIO

AMSBIO have announced a range of ready-touselentivirus supernatant products suitablefor many kinds of gene delivery applicationsincluding mammalian protein expression, stablecell line construction, cell signal pathwaylocalization and stem cell research.Converting fully differentiated mouse or humansomatic cells into embryonic-like cells (so calledinduced Pluripotent Stem Cell: iPSC) hasattracted enormous attention in stem cellresearch. Multiple reports have demonstrated thatiPS cells were generated by using a set oftranscription factors or stem cell factors thatdelivered as expression virus or expressedproteins. Although the combination ofreprogramming factors may slightly different, themain stem cell factors are: OCT3/4, SOX2,NANOG, LIN28, c-Myc and KLF4. iPSC holds thepromise of curing many human diseases andaccelerates the stem cell research.

Further Information

Related Content

Novel Organoid Matrix Enables Long-Term Culture of Human Hepatocytes
Organoid growth matrix to enable long-term culture of genome-stable bipotent stem cells from adult human liver.
Saturday, January 31, 2015
Webinar Addresses 3D Cell-Based Models for Regenerative Medicine
Dr Elad Katz presents new on-demand webinar.
Friday, October 25, 2013
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!