Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>Resources>White Papers>This White Paper
  White Papers
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
Scroll Up
Scroll Down

Highly Reproducible Gene Delivery for Stem Cell Research
Bookmark and Share

AMSBIO

AMSBIO have announced a range of ready-touselentivirus supernatant products suitablefor many kinds of gene delivery applicationsincluding mammalian protein expression, stablecell line construction, cell signal pathwaylocalization and stem cell research.Converting fully differentiated mouse or humansomatic cells into embryonic-like cells (so calledinduced Pluripotent Stem Cell: iPSC) hasattracted enormous attention in stem cellresearch. Multiple reports have demonstrated thatiPS cells were generated by using a set oftranscription factors or stem cell factors thatdelivered as expression virus or expressedproteins. Although the combination ofreprogramming factors may slightly different, themain stem cell factors are: OCT3/4, SOX2,NANOG, LIN28, c-Myc and KLF4. iPSC holds thepromise of curing many human diseases andaccelerates the stem cell research.

Further Information

Related Content

Novel Organoid Matrix Enables Long-Term Culture of Human Hepatocytes
Organoid growth matrix to enable long-term culture of genome-stable bipotent stem cells from adult human liver.
Saturday, January 31, 2015
Webinar Addresses 3D Cell-Based Models for Regenerative Medicine
Dr Elad Katz presents new on-demand webinar.
Friday, October 25, 2013
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!