Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>Resources>White Papers>This White Paper
  White Papers
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Scroll Up
Scroll Down

Highly Reproducible Gene Delivery for Stem Cell Research
Bookmark and Share


AMSBIO have announced a range of ready-touselentivirus supernatant products suitablefor many kinds of gene delivery applicationsincluding mammalian protein expression, stablecell line construction, cell signal pathwaylocalization and stem cell research.Converting fully differentiated mouse or humansomatic cells into embryonic-like cells (so calledinduced Pluripotent Stem Cell: iPSC) hasattracted enormous attention in stem cellresearch. Multiple reports have demonstrated thatiPS cells were generated by using a set oftranscription factors or stem cell factors thatdelivered as expression virus or expressedproteins. Although the combination ofreprogramming factors may slightly different, themain stem cell factors are: OCT3/4, SOX2,NANOG, LIN28, c-Myc and KLF4. iPSC holds thepromise of curing many human diseases andaccelerates the stem cell research.

Further Information

Related Content

Novel Organoid Matrix Enables Long-Term Culture of Human Hepatocytes
Organoid growth matrix to enable long-term culture of genome-stable bipotent stem cells from adult human liver.
Saturday, January 31, 2015
Webinar Addresses 3D Cell-Based Models for Regenerative Medicine
Dr Elad Katz presents new on-demand webinar.
Friday, October 25, 2013
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos