Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BioMAP® Profiling Provides Insights into Toxicity of Nanomaterials, Failed Drugs and Environmental Chemicals

Published: Monday, March 19, 2012
Last Updated: Monday, March 19, 2012
Bookmark and Share
ToxCast high-throughput screening results using BioSeek’s BioMAP® human primary cell assay systems presented at society of toxicology.

Assessments of the biological activity of various nanomaterials and chemicals in the context of primary human cell biology were presented at the annual meeting of the Society of Toxicology by scientists from the U.S. Environmental Protection Agency and BioSeek, LLC.

The presented findings further demonstrate the value of BioMAP® human primary cell assay systems for both identifying critical bioactivities and potentially adverse effects of drugs, new materials and other compounds in a high-throughput format.

“Through our work with EPA, BioMAP is yielding a rich harvest of biological information on a wide variety of environmental and other chemicals and their potential effects on human health,” said Ellen Berg, Ph.D., General Manager of BioSeek.

Berg continued, “In addition to helping meet the goals of the ToxCast Program, which are aimed at developing high-throughput screening methods capable of predicting chemical toxicities, this information is continuing to enrich our BioMAP database. We view that resource as an increasingly valuable tool that can be mined to better understand the activities and potential safety of our pharmaceutical partners’ compounds in the context of human biology, prior to undertaking costly human clinical trials.”

In an oral presentation by EPA, various nanomaterials with varying cores and their ion and micro counterparts were tested for cytotoxicity in various cell types, for transcription factor activation in HepG2cells, and for protein bioactive profiling in eight BioMAP human primary cell systems at concentrations equivalent to human exposures of 24 hours to 45 years.

Analysis showed that nanomaterial cores are critical to bioactivities and their effects are often similar to those of related ions.

Comparing test results on nanomaterials to reference profiles of other compounds in the BioMAP database suggested further molecular targets and pathways affected by the tested nanomaterials that weren’t directly measured by the assays performed.

A poster presented by EPA and BioSeek collaborators discussed the biological profiling of the ToxCast Phase II Chemical Library in BioSeek’s primary human cell co-culture systems.

The Phase II library contains 1060 unique compounds including failed pharmaceuticals donated by industry partners, reference compounds known to be endocrine disrupters, carcinogens or reproductive/developmental toxicants, and other widely used chemicals, food and cosmetic additives, and proposed alternatives to current industrially used chemicals.

The chemicals were tested in a panel of BioMAP co-culture systems and classified based on their ability to cause overt cytotoxicity in various cells types and on their bioactivity profiles when compared to reference compounds.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Asterand’s Subsidiary BioSeek Extends Collaboration with Merck Serono
New three-year deal provides Merck Serono expanded access to BioSeek LLC’s BioMAP® platform.
Thursday, March 29, 2012
BioSeek and EPA Expand ToxCast™ Contract
BioMAP® Systems technology to profile the biological effects of compounds in a second phase of the agency’s ToxCast™ program.
Monday, July 06, 2009
BioSeek Licenses Two Novel Anti-Inflammatory Peptides
The two peptides, licensed from Amylin Pharmaceuticals, were identified as candidates for development in ongoing research collaboration between the two companies.
Friday, November 14, 2008
Scientific News
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Experimental Drug Cancels Effect from Key Intellectual Disability Gene
A University of Wisconsin—Madison researcher who studies the most common genetic intellectual disability has used an experimental drug to reverse — in mice — damage from the mutation that causes the syndrome.
Common Class of Cancer Drugs May Not Lead to Cognitive Decline
UCLA study refutes 2015 research suggesting anthracyclines could cause memory loss, other impairments.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
Genetic Approach May Lead to New Treatments for Digestive Diseases
Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!