Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Study Says Nanoparticles Don’t Penetrate the Skin

Published: Thursday, October 04, 2012
Last Updated: Thursday, October 04, 2012
Bookmark and Share
Research by scientists at the University of Bath is challenging claims that nanoparticles in medicated and cosmetic creams are able to transport and deliver active ingredients deep inside the skin.

Nanoparticles, which are tiny particles that are less than one hundredth of the thickness of a human hair, are used in sunscreens and some cosmetic and pharmaceutical creams.

The Bath study discovered that even the tiniest of nanoparticles did not penetrate the skin’s surface.
These findings have implications for pharmaceutical researchers and cosmetic companies that design skin creams with nanoparticles that are supposed to transport ingredients to the deeper layers of the skin.

However the findings will also allay safety concerns that potentially harmful nanoparticles such as those used in sunscreens can be absorbed into the body.

The scientists used a technique called laser scanning confocal microscopy to examine whether fluorescently-tagged polystyrene beads, ranging in size from 20 to 200 nanometers, were absorbed into the skin.

They found that even when the skin sample had been partially compromised by stripping the outer layers with adhesive tape, the nanoparticles did not penetrate the skin’s outer layer, known as the stratum corneum.

Professor Richard Guy from the University’s Department of Pharmacy & Pharmacology, who led the study, said: “Previous studies have reached conflicting conclusions over whether nanoparticles can penetrate the skin or not.

“Using confocal microscopy has allowed us to unambiguously visualise and objectively assess what happens to nanoparticles on an uneven skin surface. Whereas earlier work has suggested that nanoparticles appear to penetrate the skin, our results indicate that they may in fact have simply been deposited into a deep crease within the skin sample.

“The skin’s role is to act as a barrier to potentially dangerous chemicals and to reduce water loss from the body. Our study shows that it is doing a good job of this.

“So, while an unsuspecting consumer may draw the conclusion that nanoparticles in their skin creams, are ‘carrying’ an active ingredient deep into the skin, our research shows this is patently not the case.”

The results of the work, published in the Journal of Controlled Release, suggest that it might be possible to design a new type of nanoparticle-based drug formulation that can be applied to the skin and give controlled release of a drug over a long period of time.

This would enable sustained delivery of the active drug, potentially reducing the frequency with which the patient would have to apply the formulation to the skin.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Cracking the Code of a Deadly Virus
Researchers have exploited weaknesses in VEEV's genetic code, creating a far less deadly variant.
New Compound to Reduce Tumor Growth
Researchers at Stanford found that a new cell surface receptor they created is effective at inhibiting cancer growth in mice.
Vaccination Against UTIs
Researchers have successfully vaccinated mice against E.coli growth in the bladder and kidneys.
Toxoplasma’s Balancing Act Explained
Parasite’s method of rewiring our immune response leads to novel tool for drug tests.
Common Virus Helps Fight Liver Cancer
Reovirus, a cause of childhood colds, stimulates the immune system to kill cancerous cells.
Long-Lasting Pill to Fight Malaria
An ultra-long acting pill has been developed to offer a new hope in eliminating malaria.
Color-Coded Stem Cells
Researchers develop colour-coding tool for tracking live blood stem cells over time.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!