Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Vitro Study Finds Digested Formula, But Not Breast Milk, is Toxic to Cells

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Findings may help explain development of fatal condition in premature infants.

Free fatty acids created during the digestion of infant formula cause cellular death that may contribute to necrotizing enterocolitis, a severe intestinal condition that is often fatal and occurs most commonly in premature infants, according to a study by University of California, San Diego bioengineers. Their report, which was based on in vitro tests comparing the digestion of fresh human breast milk and nine different infant formulas, was published online in the journal Pediatric Research.

Scientists have long known that premature infants fed formula are more likely to develop necrotizing enterocolitis than those fed breast milk. The condition is the leading cause of death from gastrointestinal diseases in premature infants, but the underlying mechanism has not been understood.  Alexander Penn, a research scientist working in the Microcirculation Laboratory of bioengineering Professor Geert Schmid-Schönbein from the UC San Diego Jacobs School of Engineering, believes they have come closer to an answer.

Penn and others had previously determined that the partially digested food in a mature, adult intestine is capable of killing cells, due to the presence of free fatty acids which have a “detergent” capacity that damages cell membranes.  The intestines of healthy adults and older children have a mature mucosal barrier that may prevent damage due to free fatty acids. However, the intestine is leakier at birth, particularly for preterm infants, which could be why they are more susceptible to necrotizing enterocolitis.

Therefore, the researchers wanted to know what happens to breast milk as compared to infant formula when they are exposed to digestive enzymes.   They “digested,” in vitro, infant formulas marketed for full term and preterm infants as well as fresh human breast milk using pancreatic enzymes or fluid from an intestine. They then tested the formula and milk for levels of free fatty acids. They also tested whether these fatty acids killed off three types of cells involved in necrotizing enterocolitis: epithelial cells that line the intestine, endothelial cells that line blood vessels, and neutrophils, a type of white blood cell that is a kind of “first responder” to inflammation caused by trauma in the body.

Overwhelmingly, the digestion of formula led to cellular death, or cytotoxicity – in less than 5 minutes in some cases – while breast milk did not. For example, digestion of formula caused death in 47 percent to 99 percent of neutrophils while only 6 percent of them died as a result of milk digestion.  The study found that breast milk appears to have a built-in mechanism to prevent cytotoxicity. The research team believes most food, like formula, releases high levels of free fatty acids during digestion, but that breast milk is digested in a slower, more controlled, process.

Currently, many neonatal intensive care units are moving towards formula-free environments, but breastfeeding a premature infant can be challenging or physically impossible and supplies of donor breast milk are limited. To meet the demand if insufficient breast milk is available, less cytotoxic milk replacements will need to be designed in the future that pose less risk for cell damage and for necrotizing enterocolitis, the researchers concluded.

This may be of benefit not only to premature infants, but also to full-term infants at higher risk for disorders that are associated with gastrointestinal problems and more leaky intestines, such as autism spectrum disorder. Dr. Sharon Taylor, a professor of pediatric medicine at UC San Diego School of Medicine and a pediatric gastroenterologist at Rady Children’s Hospital-San Diego, said the study offers more support to an already ongoing push by hospitals, including neonatal intensive care units, to encourage breastfeeding even in more challenging circumstances in the NICU. For patients who are too premature or frail to nurse, Dr. Taylor said hospital staff should provide consultation and resources to help mothers pump breast milk that can be fed to the baby through a tube.

The research was carried out in collaboration with Dr. Taylor, Karen Dobkins of the Department of Psychology, and Angelina Altshuler and James Small of the Department of Bioengineering at UC San Diego and was funded by the National Institutes of Health (NS071580 and GM85072).  The researchers conclude that breast milk has a significant ability to reduce cytotoxicity that formula does not have. One next step is to determine whether these results are replicated in animal studies and whether intervention can prevent free fatty acids from causing intestinal damage or death from necrotizing enterocolitis.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!