Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nimbus Discovery Presents Preclinical Data on Sought-After ACC Inhibitors

Published: Tuesday, January 29, 2013
Last Updated: Tuesday, January 29, 2013
Bookmark and Share
Company successfully discovered and optimized the first small molecule allosteric inhibitors of ACC achieving excellent potency, selectivity and drug-like properties within 12 months.

Nimbus Discovery LLC, a biotechnology company discovering novel medicines against exciting but previously inaccessible drug targets, will present preclinical data today at the Keystone Symposia Conference: Adipose Tissue Biology in Keystone, Colo., that show that the company has identified a series of novel, highly potent, and highly selective Acetyl CoA Carboxylase (ACC)1/2 allosteric inhibitors. Inhibition of ACC reduces fatty acid synthesis and stimulates fatty acid oxidation and has the potential to favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver diseases.

Most efforts to discover ACC inhibitors have focused on interactions within the carboxyltransferase (CT) domain of the enzyme active center resulting in poor drug-like properties and have thus failed to provide benefit to patients. In contrast, Nimbus focused on the biotin carboxylase (BC) domain where the natural product soraphen interacts. Nimbus ACC allosteric inhibitors demonstrate excellent drug-like properties and show liver-muscle exposure that is aligned with driving outstanding pharmacology in preclinical models of disease.

Key findings of the Nimbus compounds presented at the conference include:

•    Development of this series of ACC inhibitors has yielded deep structure-activity relationships, sub-nanomolar enzyme inhibition, functional activity in cellular assays and favorable drug-like properties leading to in vivo proof of concept.
•    ND-630, the Nimbus lead compound, potently inhibits hepatic fatty acid synthesis (ED50 = 0.14 mg/kg) in a highly dose-dependent manner and stimulates whole body fatty acid oxidation (minimum effective dose 3 mg/kg) in preclinical models of disease.

“Using our state-of-the art structure-based drug design approach, Nimbus was able to identify potent small molecule ACC inhibitors, with excellent pharmaceutical properties, 12 months after hits were generated from an in silico screen. We believe that we are the first company to create drug-like allosteric inhibitors against ACC. The impressive potency and selectivity of our molecules could translate into significant safety and efficacy benefits in the clinic,” said Rosana Kapeller, M.D., Ph.D., Chief Scientific Officer of Nimbus. “We are now conducting a detailed pharmacological evaluation of this broad portfolio of potent allosteric inhibitors, including ND-630, and will provide an update on these data in metabolic disease, diabetes and cancer tumor metabolism models in the near future.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Unique Visual Stimulation May Be New Treatment for Alzheimer’s
Noninvasive technique reduces beta amyloid plaques in mouse models of Alzheimer’s disease.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Uncovering Cerebral Malaria’s Deadly Agents
NIH scientists film inside mouse brains to uncover biology behind the disease.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
Immune-Cell Traps May Aid Cancer Metastasis
Study suggests cancer cells can induce neutrophils to release traps which the cells use to capture pathogens.
Inspiring Futuristic Innovation: Brain ‘Organoids’
Scientists create artificial brains, providing an advanced model for studying brain tumour development.
Parkinson's Disease Linked to Microbiome
Scientists have discovered a link between intestinal bacteria and Parkinson's disease.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!