Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Trackable Drug-Filled Nanoparticles - a Potential Weapon against Cancer

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Tiny particles filled with a drug could be a new tool for treating cancer in the future.

A new study published by Swedish scientists in Particle & Particle Systems Characterization shows how such nanoparticles can be combined to secure the effective delivery of cancer drugs to tumour cells - and how they can be given properties to make them visible in MR scanners and thus rendered trackable.

The team, which consisted of scientists from Karolinska Institutet (KI) and the Royal Institute of Technology (KTH) in Stockholm, and from Chalmers University of Technology in Gothenburg, developed so-called 'theranostic nanoparticles' by combining therapy and diagnostics in one and the same nano material.

"For this study, we produced theranostic nanoparticles able to make pinpoint deliveries of drug payloads to breast cancer cells," says Professor Eva Malmström of the School of Chemical Science and Engineering at KTH. "They are also detectable in an MR scanner and can therefore be used diagnostically. The building blocks that we use are biodegradable and show no signs of toxicity."

The new study has resulted in a method of making such theranostic nanoparticles that spontaneously form themselves out of tailored macromolecules (polymers). The balance between hydrophilic (water attracting) and hydrophobic (water repelling) components are important to the successful outcome of this process, the latter being what makes it possible for the particles to be filled with the drug. A relatively high concentration of the naturally occurring isotope 19F (fluorine) makes the particles show up clearly in high-resolution MR tomograms, and by tracking the theranostic nanoparticles through the body, researchers can learn about how the drug is taken up by the tumour and how efficacious the treatment is.

The researchers filled the nanoparticles with the chemotherapeutic doxorubicin, which is used to treat cancer of the bladder, lungs, ovaries, and breast. They showed through experiments on cultivated cells that the particles, while harmless in themselves, are effective at killing cancer cells when loaded with the drug.

The next step is to develop the system to target brain tumours, pancreatic cancer and drug-resistant breast cancer tumours, which are currently difficult to treat effectively with chemotherapy.

"Adding targeting groups to the surface or by changing the size of or adding ionic groups to our nanoparticles will make it possible to increase the selective uptake of these particles in tumours," says Andreas Nyström, Associate Professor in nanomedicine at the Swedish Medical Nanoscience Center, part of Karolinska Institutet's Department of Neuroscience.

It is hoped that one day this research will lead to tailored chemotherapy treatments that specifically seek out tumour cells. In that the drug, which is toxic to the body, can be delivered more precisely to the tumour, the treatment can be made much more effective with greatly reduced side-effects. The study was financed through a variety of sources, including a grant each from the Swedish Research Council to Dr Nyström and Professor Malmström, who also are affiliated to Polymer Factory Sweden AB.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Insights into Early Human Embryo Development
Researchers at Karolinska Institutet and the Ludwig Cancer Research in Stockholm have conducted a detailed molecular analysis of the embryo’s first week of development.
Monday, April 11, 2016
Technological Breakthrough Paves the Way for Better Drugs
Researchers have developed the first method for directly measuring the extent to which drugs reach their targets in the cell.
Monday, July 08, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Non-Toxic Approach to Treating Variety of Cancers
A team of researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine recently discovered a novel, non-toxic approach to treating a wide variety of cancers.
Making Injectable Medicine Safer
Researchers remove excess additives from drugs, which could reduce the odds of serious allergic reactions and other side effects.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!