Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Accelerating Drug Development

Published: Tuesday, March 12, 2013
Last Updated: Tuesday, March 12, 2013
Bookmark and Share
Professor Adrian Harris is currently leading a new type of trial to accelerate multi-agent drug development.

All human clinical trials of new treatments begin with phase I, where drugs are tested in isolation to confirm their safety.

Yet most effective cancer treatments use a combination of drugs, so-called 'multi-agent ' treatments.

After phase I trials are completed, it can sometimes take up to two years before multi-agent trials are approved, never mind conducting the lengthy phase II and III trials necessary before a new drug finally reaches the market.

Professor Adrian Harris at the University of Oxford is currently leading a new type of trial which aims to significantly accelerate multi-agent drug development.

Working with the Cancer Research UK Drug Development Office (DDO) and AstraZeneca, Professor Harris' team are now running phase I trials of a new cancer drug, AZD0424.

The big difference with this trial is that researchers and patients will not need to spend years waiting for approval after phase I is complete.

Since the trial was awarded flexible approval right from the start, researchers will be able to move straight to multi-agent trials to begin testing the new drug in three different 'arms'.

Each treatment arm will pair AZD0424 with a pre-approved cancer drug from a shortlist of 5.

All drugs on the shortlist have been approved for use in the trial, and the final three partner drugs will be chosen based on experiments in mice currently being undertaken at the Edinburgh and Belfast Cancer Research UK Centres.

Refining the choice of partner drugs while phase I trials are underway in Oxford adds a further time saving to the development process, and is possible thanks to the advanced approval process.

'Although the drug may be effective on its own, we expect substantial synergy in combinations,' says Professor Harris. 'So the strength of this trial is that we are able to pair it with other drugs without having to wait for further approval between stages.'

AZD0424 works by partially blocking two proteins, Src and ABL1, which are abundant in cancerous tissue. These proteins are important for cell growth, metastasis (the spread of cancer) and blood vessel development, so blocking them helps to halt the growth of cancer cells and shuts off their blood supply.

Researchers have selected a list of drugs whose effects are expected to complement AZD0424, and the results from Edinburgh and Belfast will help decide which ones to use.

'By pairing this drug with others, we can block multiple signalling pathways to improve the overall treatment,' explains Professor Harris. 'We hope that they will have additive or synergistic effects which could reduce or inhibit tumour growth.'

When the overall effect of multiple drugs is equal to adding up their individual effects, this is known as additive.

Synergistic effects are when drugs interact such that the result is greater than the sum of their individual effects.

The partner drugs have already been shown to work individually, but this trial is about finding their combined effects in humans.

'With conventional trial structures, it's unlikely that we would be investigating this drug in a multi-agent trial,' says Professor Harris. 'The flexibility to adapt the treatments used in the multi-agent stage will allow us to match specific patient groups and cancer types to the most promising drug pairs for their circumstances. By removing the considerable cost and delay of waiting for approval between stages, we can widen the pool of viable treatments and accelerate drug development.'

Yet doesn't removing this stage compromise the safety of the trials? Not according to Professor Harris.

'The approval granted before phase I was no less rigorous than it would have been if it was given between phases,' he explains. 'All of the drugs used in the trial have been tested for safety. One of the reasons for choosing AZD0424 is that similar drugs have minimal side effects, so it's a relatively low-risk compound to begin with. We will also reduce the dosage when we begin the multi-agent phase.'

Of course, this multi-arm trial design isn't suitable for all drugs. It does take a little longer to get advanced approval in the first place, delaying the start of phase I.

The design is well suited to a drug like AZD0424, which is expected to be most effective when used with other drugs. It is also important that patients in the trial receive good clinical care at all times.

'Professor Mark Middleton leads the clinical side,' says Professor Harris. 'He's currently running the phase I clinic, and every day he provides the highest quality of care to all patients in the trial. It's important that patients are treated holistically in the clinic.'

If the trial proves successful, Professor Harris hopes that the drug could be licensed for use with partner drugs within 4-5 years. 'It's worth remembering that by using combined approaches, including radiotherapy and surgery, half of common cancers are now curable,' he adds.

'A lot of people don't realize how far we've come in recent years. While there is still much work to be done, existing treatments for many cancers are highly effective. People often forget that, and it's important to focus on the positive sometimes.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Break Blood-Brain Barrier to Allow Cancer Drugs In
Oxford University scientists have found a way of delivering drugs more effectively to treat life-threatening cancers that have spread to the brain.
Tuesday, October 15, 2013
Fall in Deaths Following Withdrawal of Pain Killer
Reduction in deaths after withdrawn of pain-relief drug co-proxamol in UK.
Monday, May 14, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!