Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Computer Simulations Reveal the Energy Landscape of Ion Channels

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
A team of researchers have investigated the opening and closing mechanisms of these channels: for the first time the full energy landscape of such a large protein could be calculated.

The scientists identified a phenylalanine, which plays a key role for the transition between open and closed state. The time consuming calculations were performed using the high performance computer cluster (VSC), which is currently the fastest computer in Austria. Recently, the results were published in PLOS Computational Biology.

Every cell of our body is separated from its environment by a lipid bilayer. In order to maintain their biological function and to transduce signals, special proteins, so called ion channels, are embedded in the membrane. Anna Stary-Weinzinger and Tobias Linder from the University of Vienna and Bert de Groot from the Max Planck Institute of Biophysical Chemistry in Göttingen identified a key amino acid (phenylalanine 114), which plays an essential role for opening and closing of these ion channels.  A conformational change of phenylalanine triggers opening of the channels.

"These proteins are highly selective, they can distinguish between different ions such as sodium, potassium or chloride and allow ion flux rates of up to 100 million ions per seconds", explains Stary-Weinzinger, leader of the research project and postdoc at the Department of Pharmacology and Toxicology of the University of Vienna. "These molecular switches regulate numerous essential body functions such as transduction of nerve signals, regulations of the heart rhythm or release of neurotransmitters. Slight changes in function, caused by replacement of single amino acids, can lead to severe diseases, such as arrhythmias, migraine, diabetes or cancer."

Knowledge of ion channel function provides the basis for better drugs

Ion channels are important drug targets. 10 percent of current pharmaceuticals target ion channels. A detailed understanding of these proteins is therefore essential to develop drugs with improved risk-benefit profiles. An important basis for drug development is a detailed knowledge of the functional mechanisms of these channels. However, there are still many open questions; especially the energy profile and pathway of opening and closure are far from being understood.

Computer simulations visualize ion channel movements

To watch these fascinating proteins at work, molecular dynamics simulations are necessary. Computational extensive calculations were performed with the help of the Vienna Scientific Cluster (VSC), the fastest high performance computer in Austria, a computer cluster operated by the University of Vienna, the Vienna University of Technology and the University of Natural Resources and Applied Life Sciences Vienna. With the help of VSC, the free energy landscape of ion channel gating could be investigated for the first time. The young researchers discovered that the open and closed channel states are separated by two energy barriers of different height.

Phenylalanine triggers conformational changes

Surprisingly, the dynamics of a specific amino acid, phenylalanine 114, are coupled to a first smaller energy barrier. "This side chain acts as molecular switch to release the channel from the closed state", explains Tobias Linder, PhD student from the University of Vienna. After these local changes, the channel undergoes large global rearrangements, leading to a fully open state. This second transition from an intermediate to a fully open pore is accompanied by a large second energy barrier.

This research project is financed by the FWF-doctoral program "Molecular Drug Targets" (MolTag), which is led by Steffen Hering, Head of the Department of Pharmacology and Toxicology of the Faculty of Life Sciences, University of Vienna.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Altered Milk Protein Can Deliver AIDS Drug to Infants
Binding with an antiretroviral drug promises to greatly improve treatment for infants and young children suffering from HIV/AIDS.
Tuesday, November 11, 2014
Rats' Brains are More Like Ours than Scientists Previously Thought
If not for model organisms such as the rat neuroscientists might never know what really goes on inside our heads.
Wednesday, March 27, 2013
Scientific News
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
Chemical Used to Replace BPA is Potentially Toxic
This study is the first to examine the effects of BPA and BPS on brain cells and genes that control the growth and function of organs involved in reproduction.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!