Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scripps' Scientists Develop Promising Drug Candidates for Pain and Addiction

Published: Thursday, January 16, 2014
Last Updated: Thursday, January 16, 2014
Bookmark and Share
Two new drug scaffolds offer researchers novel tools that act on the kappa opioid receptor.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have described a pair of drug candidates that advance the search for new treatments for pain, addiction and other disorders.

The two new drug scaffolds, described in a recent edition of The Journal of Biological Chemistry, offer researchers novel tools that act on a demonstrated therapeutic target, the kappa opioid receptor (KOR), which is located on nerve cells and plays a role in the release of the neurotransmitter dopamine.

While compounds that activate KOR are associated with positive therapeutic effects, they often also recruit a molecule known as βarrestin2 (beta arrestin), which is associated with depressed mood and severely limits any therapeutic potential.

“Compounds that act at kappa receptors may provide a means for treating addiction and for treating pain; however, there is the potential for the development of depression or dysphoria associated with this receptor target,” said Laura Bohn, a TSRI associate professor who led the study. “There is evidence that the negative feelings caused by kappa receptor drugs may be, in part, due to receptor actions through proteins called beta arrestins. Developing compounds that activate the receptors without recruiting beta arrestin function may serve as a means to improve the therapeutic potential and limit side effects.”

The new compounds are called “biased agonists,” activating the receptor without engaging the beta arrestins.

Research Associate Lei Zhou, first author of the study with Research Associate Kimberly M. Lovell, added, “The importance of these biased agonists is that we can manipulate the activation of one particular signaling cascade that produces analgesia, but not the other one that could lead to dysphoria or depression.”

The researchers note that the avoidance of depression is particularly important in addiction treatment, where depressed mood can play a role in relapse.

The two drug candidates also have a high affinity and selectivity for KOR over other opioid receptors and are able to pass through the blood-brain barrier. Given these promising attributes, the scientists plan to continue developing the compounds.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TSRI Team Finds Unique Anti-Diabetes Compound
Scientists from The Scripps Research Institute (TSRI) have deployed a powerful new drug discovery technique to identify an anti-diabetes compound with a novel mechanism of action.
Thursday, December 10, 2015
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Thursday, November 26, 2015
German and US Partners Join Forces in Stem Cell Research
Researchers at The Scripps Research Institute (TSRI) in California, USA, and two German institutes, the Center for Integrated Psychiatry Kiel (ZIP) and the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, have announced a partnership to advance the quality control of human stem cells.
Monday, October 19, 2015
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
Friday, August 21, 2015
Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy
A research team at the Scripps Research Institute has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells.
Monday, March 30, 2009
Scientific News
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
Chemical Used to Replace BPA is Potentially Toxic
This study is the first to examine the effects of BPA and BPS on brain cells and genes that control the growth and function of organs involved in reproduction.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!