Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Biases in Animal Studies may Differ from those in Clinical Trials

Published: Tuesday, January 28, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
New analysis of animal studies on cholesterol-lowering statins found that non-industry studies had results that favored the drugs even more than studies funded by industry.

The analysis of 63 animal studies of statins, was led by Lisa Bero, PhD, UCSF professor clinical pharmacy.

In previous studies, Bero determined that drug-company-sponsored clinical trials were associated with publication of outcomes that favor the sponsor. Bero’s work has been cited as part of policy reform efforts that have led many journal publishers, agencies and institutions to require researchers to disclose funding sources and possible conflicts of interest when presenting their research.

The impetus for the current study, Bero said, was to explore whether or not industry-funded animal studies also would be likely to yield more positive outcomes for the companies’ drug candidates.
But in their analysis the researchers found the opposite: Results of animal studies that had industry sponsorship were less likely to measure a benefit for statins in slowing or preventing arterial disease. Of the studies that disclosed funding, 9 of 19 industry-sponsored studies had results that favored statins, in comparison to 18 out of 28 studies that favored statins among studies not funded by industry.

The explanation may be, said Bero, that “the interests of the pharmaceutical industry might be best served by underestimating efficacy prior to clinical trials, and overestimating efficacy in clinical trials. By underestimating efficacy in preclinical studies, the pharmaceutical industry could reduce the money spent on clinical trials that did not lead to marketable products.”

“Because demonstrating drug efficacy in human studies is linked to drug company profits, drug companies may have more incentive to publish favorable efficacy findings of human drug studies than animal studies.”

However, the reason for the opposite findings obtained in analyzing animal and human studies merits additional investigation, Bero said. Selective reporting of study outcomes might play a role, she suggested.

Conclusions of all the studies tended to be favorable in Bero’s PLoS Biology analysis. While the industry-sponsored animal studies had somewhat less favorable results, they nonetheless were more likely to present conclusions that favored the statin even when data were less favorable. This result highlights the role of “spin” in communicating research findings, Bero said.

The UCSF researchers also found methodological problems to be common, both in non-industry and industry-sponsored studies. Furthermore, Bero found that harmful side effects were not investigated.

“Not a single animal study we looked at assessed adverse events following the statin intervention,” Bero said. “As toxicity data from animal studies must be submitted to drug regulatory authorities before a compound can proceed to testing in humans, it is surprising that so little data on harm appear in the published scientific literature.”

In about half the studies analyzed, it appeared that animals were not assigned to treatment or placebo arms of the study randomly, a requirement of high-quality clinical trials. Furthermore, in about half the animal studies analyzed animals were identifiable to the person assigning treatment, a violation of the practice of “blinding.”

Criteria for including or excluding animals from studies often were not included in published reports, the UCSF researchers found, and many studies also failed to account properly for changes in the assigned treatment arm that occurred during the course of treatment.

Most of the industry and non industry studies analyzed in Bero’s PLoS Biology report were done using rabbits and mice. To gauge atherosclerosis, targeted by statins, researchers quantified blood vessel qualities such as number of damaged blood vessels, blood-vessel diameter, plaque severity, blockage to coronary and other arteries, and plaque rupture.

The study was funded by the National Institute of Environmental Health Sciences.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Next-Gen Genomic Tests Identify Brain-Eating Amoeba
New UCSF center aims to make tests more affordable and accessible to doctors.
Thursday, September 10, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Towards Patient-Specific Drug Screening
A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos