Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Waters Introduces UPLC System for nano- to Microscale Separations

Published: Wednesday, January 29, 2014
Last Updated: Wednesday, January 29, 2014
Bookmark and Share
New UPLC system and columns drive separations efficiency and the sensitivity of LC-MS analyses to new levels.

Waters Corporation introduced the new Waters® ACQUITY UPLC® M-Class System, an industry-first nano- to microscale UltraPerformance LC® (UPLC®) system rated for 15,000 psi operation. Coupled to Waters mass spectrometers, the system delivers the sensitivity to quantify and to identify vanishingly small concentrations of key molecules. The ACQUITY UPLC M-Class System is ideally suited for a broad range of applications including proteomics, metabolic profiling, metabolite identification and pharmacokinetic studies. Its new 15k psi-capable ACQUITY UPLC M-Class Columns tap the potential of sub-2-µm particle technology, yielding faster separations, greater peak capacities and increased levels of sensitivity.

The ACQUITY UPLC M-Class System was introduced at WCBP 2014 Symposium, a conference with a focus on analytical methods for biotechnology pharmaceuticals. Waters expects to commence shipments of the new system in the current fiscal quarter. 

“When scientists doing proteomics or investigating new biopharmaceuticals talk to us about the work they do, they often speak of protein coverage or being able to quantify and identify incredibly small amounts of key molecules usually in the presence of much higher amounts of other molecules. This is difficult work without the appropriate tools. With the ACQUITY UPLC M-Class System, they will have the capability to peer into the unseen and achieve their research goals,” said Art Caputo, President of the Waters Division. “As an LC inlet to mass spectrometers, the ACQUITY UPLC M-Class System empowers more scientists to reliably employ microscale chromatography in order to solve their most complex analytical challenges.” 

Nano- to microscale LC is defined by flow rates of 200 nL/min. to 100 μL/min. with columns having an internal diameter of up to 1.0 mm. The advantages include the conservation of sample and solvent, increased sensitivity and a flow rate compatible with high sensitivity electrospray ionization (ESI) mass spectrometry (MS).

The innovations incorporated into the ACQUITY UPLC M-Class System are led by its internal low-volume design and newly redesigned fluidics that minimize dispersive and adsorptive losses during a chromatographic separation. The non-reactive materials for its internal fluid pathways ensure the integrity of samples and maximize the recovery of biologically important molecules. In order to preserve peak capacity, the ACQUITY UPLC M-Class System has a new micro ESI probe specifically optimized for microscale separations, along with low-dispersion flow cells that retain chromatographic resolution into the detector.  The increased pressure envelope enables the ACQUITY UPLC M-Class System to exploit fully sub-2-µm particles in longer columns  - up to 25 cm in length – resulting in faster separations and better resolution of individual chromatographic peaks.

With the introduction of the ACQUITY UPLC M-Class System, Waters is introducing five new chromatographic columns with internal diameters ranging from 75 µm to 1.0 mm. They are: HSS T3 (1.8 µm, 100Å pore size); BEH C18 (1.7 µm, 130Å and 300Å); BEH C4 (1.7 µm, 300Å); and CSH C18 (1.7 µm, 130Å); and Symmetry® C18 (5 µm, 100Å). Waters is complementing these new columns with a new line of 300 µm internal diameter steel columns packed with sub-2-μm particles.

Monitoring Protein Conformation with HDX Technology

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is used to study the structural dynamics and conformational changes of proteins and to better determine their higher order structure. Deuterium is a heavy isotope of hydrogen; as such, deuterium uptake can be measured or “weighed” by mass spectrometry.

Scientists use information about protein conformation from an HDX-MS study to compare a protein in one state, for example before its interaction with a drug candidate, to a new state after it is bound to a drug. These changes in protein conformation can be measured by the amount of deuterium that is taken up or released when compared to a control. HDX-MS is capable of monitoring domain interaction, localized protein dynamics, ligand binding and folding and unfolding in the solution phase.

High efficiency separations are essential to deliver the data quality required to detect small changes in protein conformation. Owing to its increased operating pressure range, the ACQUITY UPLC M-Class System can rapidly separate peptic peptides for MS analysis. Furthermore, the automated HDX-MS system integrates all the steps of HDX-MS from sample preparation to actual sequence determination, deuterium uptake curves, and comparison plots with Waters’ DynamX™ HDX Data Analysis Software. 

To take HDX-MS to another level, Waters has developed a UPLC-capable protein digestion column, the Waters Enzymate™ BEH Pepsin Column. The ACQUITY UPLC M-Class System together with Waters SYNAPT® G2-Si or Xevo® G2-S QTof mass spectrometers, delivers the quality spectral data required to resolve the small mass changes typical of HDX-MS. Together, these innovations combine to provide the only complete HDX-MS analysis system on the market. 

Expanding the Dynamic Range of Analyses with 2D Separations

Two-dimensional LC is a strategy for tackling the challenges of dealing with sample complexity and the dynamic range of the sample’s proteins or peptides. With this technique, a first-dimension separation of peptides or proteins is fractionated, and the fractions are trapped onto a second-dimension column that has different selectivity in order to multiply the peak capacity of each separation dimension.  

The ACQUITY UPLC M-Class System streamlines 2D-LC separations with an intuitive menu-driven method setup, standardized separation chemistries, and highly reproducible chromatography. Innovative valving strategies increase sample throughput while maximizing data quality.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Waters, Chinese Pharmacopeia Commission Establish Joint Open Laboratory
Located in the laboratory building of Beijing Zhendong Guangming Drug Research Institute, the new facility is over 400m2.
Thursday, July 10, 2014
Waters, Prosolia Exclusive Agreement for DESI Technology for Clinical MS Applications
Prosolia DESI Technology now available on SYNAPT G2 Si and Xevo G2-XS QTof mass spectrometers.
Monday, June 16, 2014
Waters Corporation Welcomes King’s College London into Waters Centers of Innovation Program
Aim is to support the drug control centre’s efforts to develop novel analytical methods for sports drug testing and toxicological studies.
Thursday, November 11, 2010
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos