Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Skin Layer Grown in Lab Could Replace Animal Testing

Published: Monday, April 28, 2014
Last Updated: Monday, April 28, 2014
Bookmark and Share
Skin layer grown from human stem cells could replace animals in drug and cosmetics testing.

An international team led by King’s College London and the San Francisco Veteran Affairs Medical Center (SFVAMC) has developed the first lab-grown epidermis – the outermost skin layer - with a functional permeability barrier akin to real skin.  The new epidermis, grown from human pluripotent stem cells, offers a cost-effective alternative lab model for testing drugs and cosmetics, and could also help to develop new therapies for rare and common skin disorders.

The epidermis, the outermost layer of human skin, forms a protective interface between the body and its external environment, preventing water from escaping and microbes and toxins from entering.  Tissue engineers have been unable to grow epidermis with the functional barrier needed for drug testing, and have been further limited in producing an in vitro (lab) model for large-scale drug screening by the number of cells that can be grown from a single skin biopsy sample.

The new study, published in the journal Stem Cell Reports, describes the use of human induced pluripotent stem cells (iPSC) to produce an unlimited supply of pure keratinocytes – the predominant cell type in the outermost layer of skin - that closely match keratinocytes generated from human embryonic stem cells (hESC) and primary keratinocytes from skin biopsies. These keratinocytes were then used to manufacture 3D epidermal equivalents in a high-to-low humidity environment to build a functional permeability barrier, which is essential in protecting the body from losing moisture, and preventing the entry of chemicals, toxins and microbes.

A comparison of epidermal equivalents generated from iPSC, hESC and primary human keratinocytes (skin cells) from skin biopsies showed no significant difference in their structural or functional properties compared with the outermost layer of normal human skin. 

Dr Theodora Mauro, leader of the SFVAMC team, says: 'The ability to obtain an unlimited number of genetically identical units can be used to study a range of conditions where the skin’s barrier is defective due to mutations in genes involved in skin barrier formation, such as ichthyosis (dry, flaky skin) or atopic dermatitis. We can use this model to study how the skin barrier develops normally, how the barrier is impaired in different diseases and how we can stimulate its repair and recovery.'

Dr Dusko Ilic, leader of the team at King's College London, says: 'Our new method can be used to grow much greater quantities of lab-grown human epidermal equivalents, and thus could be scaled up for commercial testing of drugs and cosmetics. Human epidermal equivalents representing different types of skin could also be grown, depending on the source of the stem cells used, and could thus be tailored to study a range of skin conditions and sensitivities in different populations.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Development in Preventing Macular Degeneration
Following macular degeneration insight, promising drugs to prevent vision loss have been identified.
Improving Tumour Therapy with Nanoparticles
UHN nanoparticle called PEARLs is a promising utilisation of photo-thermal therapy for cancer treatment.
New Antidepressant Treatment Discovered
Scientists have demonstrated how gene therapy could lead to new treatments for depression.
Cellular Origin of Skin Cancer Identified
Scientists have identified ‘cell of origin’ in the most common form of skin cancer, and followed the process that leads to tumour growth.
Enhancing Drug Safety with a Web-Based Data Tool
Online and open-access tool allows anyone to find, combine and analyse FDA drug information.
Genetic Missing Link Could Explain Mystery of Heritability
Mother’s diet during pregnancy can permanently affect offspring attributes through process that could be strongly influenced by genetic variation in an unexpected part of the genome.
Does the Transport of Next-Gen Vaccines Lie with E.coli?
Study shows harmless E.coli capsule could aid next-gen vaccine delivery and efficiency.
Breathing in a Cure
Researchers working on inhalable ibuprofen to treat cystic fibrosis.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!