Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>Products>This Product

Gemini EM Fluorescence Microplate Reader

Product Description
The Gemini™ EM Fluorescence Microplate Reader exemplifies flexibility for fluorescence assays. Reading 6 to 384-well microplates, the optical design of the instrument can be switched from top to bottom read modes for improved sensitivity to solutions and cell-based assays. Dual monochromators for variable wavelength selection between 250 nm and 850 nm eliminate the need for searching out the right pair of excitation and emission filters and wavelength scanning across a range of wavelengths in increments as small as 1 nm can be used to optimize assay parameters. Up to 4 wavelength pairs can be read for endpoint and kinetic measurements, and the Gemini EM Microplate Reader offers well scanning to report a fluorescent measurement from a single point in the center of a microplate well to multiple points across a tissue culture well.

Unlike most fluorescence readers that may saturate out with signal intensities over 3 orders of magnitude, the patented AutoPMT Optimization System of the Gemini EM Microplate Reader adjusts the fluorescence detector to each sample well's concentration and normalizes the raw data, extending the dynamic range of assays so that low and high signals can be captured from the same plate. This calibration against an internal standard provides an additional benefit in being able to confidently compare relative fluorescence units (RFUs) of individual samples across plates and readers.

The Gemini EM Microplate Reader is supplied with SoftMax® Pro Data Acquisition & Analysis Software, Molecular Devices' industry leading all-in-one data acquisition and analysis software. Additionally, the Gemini EM Microplate Reader can be seamlessly integrated with the StakMax® Microplate Handling System through the SoftMax Pro Software.
Product Gemini EM Fluorescence Microplate Reader
Company Molecular Devices Product Directory
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices Product Directory
1311 Orleans Drive Sunnyvale, CA 94089-11361 United States

Tel: 1-800-635-5577
Fax: 1-408-548-6439

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.


Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos