Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


MaxDiscovery™ GAPDH ELISA Kit

Product Description
The MaxDiscovery™ Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) ELISA Kit is an enzyme immunoassay that analyzes the quantity of GAPDH in cells, tissues, serum or urine. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) is well known as one of the key enzymes involved in glycolysis. GAPDH initiates the second stage of glycolysis, catalyzing the reaction that converts glyceraldehyde 3-phosphate (GAP) into 1,3 bisphosphoglycerate (1,3 BPG). GAPDH oxidizes and phosphorylates GAP to produce 1,3 BPG, which is then used as an intermediate in the synthesis of ATP. While the glycolytic function of GAPDH is widely known, recent evidence suggests that GAPDH is a highly versatile molecule that plays several diverse roles in living systems. Mammalian GAPDH is involved in a great number of intracellular processes such as membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. There have also been many findings that GAPDH plays a role in different pathologies including prostate cancer progression, programmed neuronal cell death and age-related neuronal diseases, i.e. Alzheimer’s and Huntington’s disease. The GAPDH gene is constitutively expressed at high levels in almost all tissues. However, the molecular mechanism that sustains high-level expression of this housekeeping enzyme is still unclear. GAPDH is almost always a tetramer and is localized to the cytoplasm in healthy cells. Translocation of GAPDH into the nucleus is seen during its role in the early stages of apoptosis and oxidative stress. Because of its high-level and constitutive expression, GAPDH is widely used as a loading control for Northern/Western blots and for protein normalization. Like most ELISA assays, the MaxDiscovery™ GAPDH ELISA Test relies on a Horseradish Perioxidase (HRP) conjugated antibody and the TMB (3,3´,5,5´-tetramethylbenzidine) substrate. TMB is a chromogen that yields a blue color when oxidized with hydrogen peroxide (catalyzed by HRP) that has major absorbances at 370 nm and 652 nm. The color then changes to yellow with the addition of acid with maximum absorbance at 450 nm. The relative amount of GAPDH protein in the cells will be directly proportional to the amount of signal that is obtained at 450 nm. Selected Citations: Jones, J. A. et al. (July, 2010) Alterations in membrane type-1 matrix metalloproteinase abundance after the induction of thoracic aortic aneurysm in a murine model. Am J Physiol Heart Circ Physiol, 299: H114 - H124. doi: 10.1152/ajpheart.00028.2010
Product MaxDiscovery™ GAPDH ELISA Kit
Company BIOO Scientific - Product Directory
Price Request a quote
More Information View company product page
Catalog Number 1 x 96 wells
Quantity 510
Company Logo

BIOO Scientific - Product Directory
3913 Todd Lane Suite 312 Austin, TX 78744, USA

Tel: +1 512-707-8993
Fax: +1 512-707-8122
Email: info@biooscientific.com



Scientific News
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.

SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!