Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Iron in the Blood Could Cause Cell Damage
Concentrations of iron similar to those delivered through standard treatments can trigger DNA damage within 10 minutes, when given to cells in the laboratory.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Honey’s Potential to Save Lives
The healing powers of honey have been known for thousands of years.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Scroll Up
Scroll Down

Rapid Critical Micelle Concentration (CMC) Determination Using Fluorescence Polarization
Bookmark and Share

BioTek Instruments

This application note describes the rapid semi-automated determination of CMC values for surfactants in 384-well microplates using fluorescence polarization. 

These data demonstrate that the use of DAF fluorescence polarization as a means to determine the CMC values for surfactants is not only easy and accurate, but that the method can also be easily scaled for large sample numbers. Unlike fluorescence intensity, fluorescence polarization uses a ratio of two measurements on each well, correcting for differences in intensity brought about by experimental conditions, such as pH, temperature, and surfactant concentration. The Synergy Neo reader is a high throughput reader specifically designed for the measurement of large numbers of samples. 

The reader uses modular optic cubes to measure numerous read modalities, which include UV-Vis absorbance, luminescence, fluorescence intensity, time resolved fluorescence, HTRF®, AlphaScreen®, and fluorescence polarization. In regards to fluorescence polarization, the reader is capable of simultaneously determining parallel and perpendicular measurements. Gen5™ software (BioTek instruments) not only controls reader function, but also is capable of automatically performing the 4-parameter logistic fit and calculating CMC values.


Further Information

Related Content

BioTek Instruments and Global Cell Solutions set to Collaborate
BioTek Instruments, Inc., and Global Cell Solutions, Inc., (GCS) announce a formal collaboration for the coming year at LabAutomation 2010. The poster Automation of a Microplate Cell-based Assay to Measure Activity of the Histamine H1 G Protein-coupled Receptor Using a Novel 3-D Cell Culture Technique is the first in a series of collaborative publications detailing the use of BioTek’s microplate instrumentation for various cell-based assays.
Wednesday, January 27, 2010
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!