Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NanoInk Announces Launch of Contract Services Program for Live Single Cell Assay Work

Published: Wednesday, February 08, 2012
Last Updated: Wednesday, February 08, 2012
Bookmark and Share
Service offering expected to advance research programs involved with toxicity assessment, high content screening, and cell-cell communication.

NanoInk's(R) NanoFabrication Systems Division announced today that it introduced a new contract services program dedicated to the development of live single cell array assays. This offering supplements NanoInk's portfolio of Dip Pen Nanolithography(R) (DPN(R))-based systems and tools used for micro and nanopatterning applications to include a service component. Life scientists now have even more ways to access the advantages of DPN for their research.

At the heart of the NanoFabrication Systems' contract services program is its DPN nanofabrication instruments capable of constructing complex multiplexed patterns of biocompatible materials at sub-cellular scales. This capability can be utilized to construct defined microenvironments for attaching live single cells and subsequently investigating cellular responses. Single cells (up to 5,000 individual cells on a single NanoInk chip) can be exposed to different external stimuli (including biological, chemical and topographical stimuli) and the downstream effects of these stimuli can be monitored at the cellular, proteomic or genomic levels. Additionally, studies on limited or rare cells harvested from a patient can potentially be exposed to many conditions, making theranostic applications possible. This new contract services program will enable researchers to engage NanoInk to design, develop and construct custom single cell assays.

"We believe that NanoInk's single cell assay technology has the potential to revolutionize in vitro cell biology research, including applications in drug toxicity testing and drug screening. Micropatterned single cells can also be harnessed to probe underlying mechanisms of cell behavior like cell-cell interactions, cell-surface interactions, cell migration, and cell invasion," explained Tom Warwick, general manager of the NanoFabrication Systems Division.

NanoInk has already demonstrated the ability of its nanofabrication platform to place single cells at defined locations on a substrate and to then expose individual cells to small molecules and nanoparticles.

Saju Nettikadan, Ph.D., director of applications development at NanoInk, said, "NanoInk findings also show that two different cell types can be placed at defined locations on a single chip to form single cell co-cultures. We have demonstrated the single cell co-culture proof-of-concept using 3T3 fibroblasts and C2C12 myoblasts. As part of our live single cell assay contract research program, we welcome requests to design and develop custom assays."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
How Cancer Spreads in the Body
Cancer cells appear to depend on an unusual survival mechanism to spread around the body, according to an early study led by Queen Mary University of London.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
How Prions Kill Neurons: New Culture System Shows Early Toxicity to Dendritic Spines
Boston University researchers have developed a cell culture system to study prions.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!