Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Compound Virtually Eliminates HIV in Cell Culture

Published: Friday, July 20, 2012
Last Updated: Friday, July 20, 2012
Bookmark and Share
The compound defines a novel class of HIV anti-viral drugs endowed with the capacity to repress viral replication in acutely and chronically infected cells.

The HIV/AIDS pandemic continues to affect 34 million individuals worldwide, including more than 3 million children, according to the World Health Organization. Current treatment involves the use of several antiretroviral drugs, termed Highly Active Antiretroviral Therapy (HAART), which can extend the life expectancy of HIV-positive individuals and decrease viral load without, however, eradicating the virus.

“We know that there are reservoirs of HIV that aren’t being eliminated by current treatment and that keep replenishing the infection,” said Susana Valente, a Scripps Research biologist who led the study. “Viral production from these cellular reservoirs that harbor an integrated viral genome is not affected by current antiretroviral drugs, which only stop novel rounds of infection. The compound in the current study virtually eliminates all viral replication from already-infected cells where HIV hides.”

The new study, published in the July 20, 2012 issue of the journal Cell Host and Microbe, focused on a medically promising compound known as Cortistatin A. This natural product was isolated in 2006 from a marine sponge, Corticium simplex, discovered more than 100 years ago. In 2008, Scripps Research chemist Phil Baran and his team won the global race to synthesize the compound, presenting an efficient and economical method.

In the new study, Valente and her colleagues collaborated with the Baran lab, using a synthetic version of the compound, didehydro-Cortistatin A, to study the compound’s effect on two strains of HIV. The strains were HIV-1, the most common form of the virus, and HIV-2, which is concentrated in West Africa and some parts of Europe.

The results showed that the compound reduced viral production by 99.7 percent from primary CD4+T cells (a type of immune cell) isolated from patients without levels of the virus in their bloodstream and who had been under HAART treatment for a long period of time. When the compound was added to other antiviral treatments, it further reduced by 20 percent viral replication from CD4+T cells isolated from patients with detectable amounts of virus in their bloodstreams.

The inhibitor works by binding tightly to the viral protein known as Tat, a potent activator of HIV gene expression, effectively preventing the virus from replicating even at miniscule concentrations—making it the most potent anti-Tat inhibitor described to date, Valente said.

Another interesting feature of this compound is that withdrawal of the drug from cell culture does not result in virus rebound, which is normally observed with other antiretrovirals.

While most antiretroviral compounds block only new infections, didehydro-Cortistatin A reduces viral replication from already-infected cells, potentially limiting cell-to-cell transmission.

The new inhibitor already has a drug-like structure, is effective at very low concentrations, and has no toxicity associated with it, at least at the cellular level, the study noted.

The first author of the study “Potent Suppression of Tat-dependent HIV Transcription by didehydro-Cortistatin A” is Guillaume Mousseau of Scripps Research. In addition to Valente and Baran, other authors include Mark A. Clementz, Wendy N. Bakeman, Nisha Nagarsheth, Michael Cameron, and Jun Shi of Scripps Research; and Rémi Fromentin and Nicolas Chomont of the Vaccine and Gene Therapy Institute.

The study was supported by the National Institutes of Health’s National Institute of Allergy and Infectious Diseases (NIAID) and the Landenberger Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
3D Models May Yield Ovarian Cancer Insights
Researchers are developing new tools to decipher ovarian cancer developments through a 3D printing technology.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Mapping Zika’s Routes to Developing Fetus
UC researchers show how Zika virus travels from a pregnant woman to her fetus, and also identified a drug that could stop it.
3D Printing Cartilage
3D bioprinting has successfully manufactured cartilage using bioink sourced from cow cartilage strands.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Scientists Culture Elusive Yellowstone Microbe
ORNL scientists have successfully isolated and cultured a Yellowstone sourced acidic hot-spring based microbe.
A 3D Paper-Based Microbial Fuel Cell
Researchers have developed a proof-of-concept 3D paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power.
Just Gellin’: How To Grow Strong Muscles-On-A-Chip
USC researchers hope to usher in new treatments for patients with muscular dystrophy.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!